Subversion Repositories Code-Repo

Rev

Rev 120 | Blame | Last modification | View Log | RSS feed

#include "maindefs.h"
#include "Adafruit_GFX.h"
#include "interrupts.h"
#include "uart.h"
#include "i2c.h"
#include "spi.h"
#include "nfc.h"
#include "led_backpack.h"
#include "oled_ssd1306.h"
#include "oled_ssd1331.h"
#include <usart.h>
#include <delays.h>
#include <string.h>

#pragma config WDTEN = OFF          // Turn off watchdog timer
#pragma config XINST = OFF          // Turn off extended instruction set
#pragma config OSC = HSPLL          // Use external oscillator (101)
#pragma config PLLDIV = 3           // Set PPL prescaler to 3 (to get 4MHz)
#pragma config CFGPLLEN = ON        // Enable PLL on startup
#pragma config PLLSEL = PLL96       // Use 96MHz PLL 4MHz -> 96MHz / 2 = 48MHz
//#pragma config SOSCSEL = HIGH       // High Power T1OSC/SOSC circuit selected
//#pragma config ADCSEL = BIT12       // 12-bit ADrC
//#pragma config IOL1WAY = OFF        // IOLOCK bit can be set and cleared as needed

/* ----------- IO Pins -----------
 * RA0 - 
 * RA1 - 
 * RA2 - 
 * RA3 - 
 * RA4 - [CANNOT BE USED (VDDCORE/VCAP)]
 * RA5 - 
 * RA6 - Oscillator
 * RA7 - Oscillator
 * 
 * RB0 - UART2 Tx
 * RB1 - UART2 Rx
 * RB2 - SPI2 MOSI
 * RB3 - SPI2 MISO
 * RB4 - SPI2 CLK
 * RB5 - SPI2 D/C
 * RB6 - SPI2 RESET
 * RB7 - SPI2 CS
 *
 * RC0 -
 * RC1 - IRQ
 * RC2 - Reset
 * RC3 - I2C CLK
 * RC4 - I2C DATA
 * RC5 -
 * RC6 - UART1 Tx
 * RC7 - UART1 Rx
 * ---------------------------- */

#ifdef _TEST_UART

void main(void) {
    unsigned char length = 0;
    unsigned char buffer[100];

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    while (1) {

        length = UART1_Read((char *) buffer);
        if (length != 0) {
            UART1_WriteB((char *) buffer, length);
        }

        Delay10KTCYx(255);
        Delay10KTCYx(255);
    }
}
#endif

#ifdef _TEST_I2C_MASTER

void main(void) {
    unsigned char i = 0;
    unsigned char length = 0;
    unsigned char result = 0;
    unsigned char buffer[100];

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    I2C_Init(); // Initialize the I2C handler code

    I2C_Configure_Master();

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    while (1) {

        buffer[0] = 0xBB;

        I2C_Master_Send(0x30, 1, buffer);
        result = I2C_Get_Status();
        while (!result) {
            result = I2C_Get_Status();
        }
        DBG_PRINT_MAIN("S:%X ", result);

        I2C_Master_Recv(0x30, 2);
        result = I2C_Get_Status();
        while (!result) {
            result = I2C_Get_Status();
        }
        DBG_PRINT_MAIN("S:%X ", result);
        length = I2C_Read_Buffer(buffer);
        DBG_PRINT_MAIN("L:%d D:", length);
        for (i = 0; i < length; i++) {
            DBG_PRINT_MAIN("%c ", buffer[i]);
        }

        I2C_Master_Restart(0x30, 0xBB, 2);
        result = I2C_Get_Status();
        while (!result) {
            result = I2C_Get_Status();
        }
        DBG_PRINT_MAIN("S:%X ", result);
        length = I2C_Read_Buffer(buffer);
        DBG_PRINT_MAIN("L:%d D:", length);
        for (i = 0; i < length; i++) {
            DBG_PRINT_MAIN("%c ", buffer[i]);
        }

        DBG_PRINT_MAIN("\r\n");

        Delay10KTCYx(255);
        Delay10KTCYx(255);
    }
}
#endif

#ifdef _TEST_I2C_SLAVE

void main(void) {
    unsigned char i = 0;
    unsigned char length = 0;
    unsigned char result = 0;
    unsigned char buffer[100];

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    I2C_Init(); // Initialize the I2C handler code

    I2C_Configure_Slave(0x30);

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    while (1) {

        result = I2C_Get_Status();
        while (!result) {
            result = I2C_Get_Status();
        }
        DBG_PRINT_MAIN("%X ", result);
        length = I2C_Read_Buffer(buffer);
        DBG_PRINT_MAIN("%d ", length);
        for (i = 0; i < length; i++) {
            DBG_PRINT_MAIN("%X ", buffer[i]);
        }
        DBG_PRINT_MAIN("\r\n");

        Delay10KTCYx(255);
        Delay10KTCYx(255);
    }
}
#endif

#ifdef _TEST_NFC

void main(void) {
    unsigned char i = 0;
    unsigned char length = 0;
    unsigned char result = 0;
    NFC_FIRMWARE_VERSION version;
    unsigned char buffer[50];

    // NFC stuff
    unsigned char uid[7];
    unsigned char uidLen;

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    I2C_Init(); // Initialize the I2C handler code
    NFC_Init(); // Initialize the NFC chip (uses I2C)

    I2C_Configure_Master(I2C_400KHZ);

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    version = NFC_getFirmwareVersion();
    while (!version.IC) {
        DBG_PRINT_MAIN("Waiting for NFC board..\r\n");
        Delay10KTCYx(3);
        version = NFC_getFirmwareVersion();
    }
    DBG_PRINT_MAIN("Found chip PN5%X\r\n", version.IC);
    DBG_PRINT_MAIN("Firmware ver. %d.%d\r\n", version.Ver, version.Rev);
    NFC_SAMConfig();

    while (1) {

        // This call will hang until the NFC chip replies (card detected)
        if (NFC_readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLen)) {
            DBG_PRINT_MAIN("Card Found!\r\n");
            DBG_PRINT_MAIN("UID Length: %d bytes\r\n", uidLen);
            DBG_PRINT_MAIN("UID: ");
            for (i = 0; i < uidLen; i++) {
                DBG_PRINT_MAIN("%02X ", uid[i]);
            }
            DBG_PRINT_MAIN("\r\n");
        }

        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
    }
}
#endif

#ifdef _TEST_LED_BACKPACK

void main(void) {
    unsigned char i = 0;
    unsigned char length = 0;
    unsigned char buffer[100];
    unsigned int counter = 0;

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    I2C_Init(); // Initialize the I2C handler code
    LED_Init(); // Initialize the LED backpack (uses I2C);

    I2C_Configure_Master(I2C_400KHZ);

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    LED_Start();
    LED_writeDigitNum(0, 1, 1);
    LED_writeDigitNum(1, 2, 0);
    LED_writeDigitNum(2, 3, 0);
    LED_writeDigitNum(3, 4, 0);
    LED_writeDisplay();
    for (i = 0; i < 15; i++) {
        LED_setBrightness(15 - i);
        Delay10KTCYx(100);
    }
    for (i = 0; i < 15; i++) {
        LED_setBrightness(i);
        Delay10KTCYx(100);
    }
    LED_blinkRate(HT16K33_BLINK_OFF);

    while (1) {
        LED_writeNum(counter);
        counter++;
        if (counter > 9999)
            counter = 0;

        //        Delay10KTCYx(255);
    }
}
#endif

#ifdef _TEST_SPI

void main(void) {
    unsigned char i = 0;
    unsigned char length = 0;
    unsigned char result = 0;
    unsigned char buffer[100];
    unsigned char test[8] = "ASDF123";

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    while (1) {

        SPI2_Write(test, 7);
        while (result != 7) {
            length = SPI2_Buffer_Read(buffer);
            if (length) {
                result += length;
            }
        }
        result = 0;

        for (i = 0; i < result; i++) {
            DBG_PRINT_MAIN("%X ", buffer[i]);
        }
        DBG_PRINT_MAIN("\r\n");

        Delay10KTCYx(255);
        Delay10KTCYx(255);
    }
}
#endif

#ifdef _TEST_SSD1306_OLED

void main(void) {
    unsigned int i = 0;
    unsigned long l = 0;

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
    SSD1306_Init(); // Initialize the OLED code

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    SSD1306_Begin(SSD1306_SWITCHCAPVCC);

    SSD1306_Display(); // Show splashscreen

    while (1) {
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        for (i = 0; i < 32; i++) {
        //            SSD1306_Draw_Pixel(i, i, WHITE);
        //        }
        //        SSD1306_Display();

        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_DrawLine();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_DrawRect();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_FillRect();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_DrawCircle();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        GFX_fillCircle(GFX_width() / 2, GFX_height() / 2, 10, WHITE);
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_DrawRoundRect();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_FillRoundRect();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_DrawTriangle();
        //        SSD1306_Display();
        //
        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_FillTriangle();
        //        SSD1306_Display();

        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        SSD1306_Test_DrawChar();
        //        SSD1306_Display();

        //        Delay10KTCYx(255);
        //        Delay10KTCYx(255);
        //        SSD1306_Clear_Display();
        //        GFX_setTextSize(1);
        //        GFX_setTextColor(WHITE);
        //        GFX_setCursor(0,0);
        //        GFX_writeString("Hello World!\n");
        ////        GFX_setTextColorBG(BLACK, WHITE);
        //        i = 65535;
        //        GFX_writeString("%u %d\n", i, i);
        ////        GFX_setTextSize(2);
        ////        GFX_setTextColor(WHITE);
        //        l = 0xDEADBEEF;
        //        GFX_writeString("0x%X", (long)l);
        //        SSD1306_Display();

        SSD1306_Clear_Display();
        GFX_setRotation(0);
        GFX_setTextSize(1);
        GFX_setTextColor(SSD1306_WHITE);
        GFX_setCursor(0, 0);
        GFX_writeString("%u", i);
        i++;
        SSD1306_Display();

    }
}
#endif

#ifdef _TEST_SSD1331_OLED

void main(void) {
    unsigned int i = 0;

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
    SSD1331_Init(); // Initialize the OLED code

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    SSD1331_Begin();

    while (1) {

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        SSD1331_Test_Pattern();

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_clearScreen();
        GFX_setRotation(0);
        GFX_setCursor(0, 0);
        GFX_writeString("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa");

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_clearScreen();
        GFX_setRotation(3);
        GFX_setCursor(0, 0);
        GFX_writeString("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa");

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        SSD1331_Test_DrawLines(SSD1331_YELLOW);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(3);
        SSD1331_Test_DrawLines(SSD1331_BLUE);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        SSD1331_Test_DrawRect(SSD1331_GREEN);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(1);
        SSD1331_Test_DrawRect(SSD1331_RED);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(2);
        SSD1331_Test_DrawRect(SSD1331_BLUE);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(3);
        SSD1331_Test_DrawRect(SSD1331_YELLOW);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        SSD1331_Test_FillRect(SSD1331_YELLOW, SSD1331_MAGENTA);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(3);
        SSD1331_Test_FillRect(SSD1331_BLUE, SSD1331_GREEN);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        GFX_clearScreen();
        SSD1331_Test_FillCircle(10, SSD1331_BLUE);
        SSD1331_Test_DrawCircle(10, SSD1331_WHITE);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(3);
        GFX_clearScreen();
        SSD1331_Test_FillCircle(10, SSD1331_MAGENTA);
        SSD1331_Test_DrawCircle(10, SSD1331_YELLOW);

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        SSD1331_Test_DrawTria();

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(3);
        SSD1331_Test_DrawTria();

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(0);
        SSD1331_Test_DrawRoundRect();

        Delay10KTCYx(255);
        Delay10KTCYx(255);
        GFX_setRotation(3);
        SSD1331_Test_DrawRoundRect();

        //        GFX_clearScreen();
        //        GFX_setRotation(3);
        //        GFX_setCursor(0,0);
        //        GFX_setTextColorBG(SSD1331_WHITE, SSD1331_BLACK);
        //        GFX_writeString("%u", i);
        //        i++;
    }
}
#endif

#if !defined(_TEST_UART) && !defined(_TEST_I2C_MASTER) && \
    !defined(_TEST_I2C_SLAVE) && !defined(_TEST_SPI) && \
    !defined(_TEST_NFC) && !defined(_TEST_LED_BACKPACK) && \
    !defined(_TEST_SSD1306_OLED) && !defined(_TEST_SSD1331_OLED)

void main(void) {
    unsigned char i = 0;
    unsigned char length = 0;
    unsigned char result = 0;
    unsigned char buffer[100];

    /* --------------------- Oscillator Configuration --------------------- */
    //    OSCTUNEbits.PLLEN = 1;          // Enable 4x PLL
    OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
    OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
    /* -------------------------------------------------------------------- */

    // Set all ports as digial I/O
    ANCON0 = 0xFF;
    ANCON1 = 0x1F;

    UART1_Init(); // Initialize the UART handler code
    I2C_Init(); // Initialize the I2C handler code
    SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
    SSD1331_Init(); // Initialize the SSD1331 OLED display (uses SPI2)
//    NFC_Init(); // Initialize the NFC chip (uses I2C)
//    LED_Init(); // Initialize the LED backpack (uses I2C);

    I2C_Configure_Master(I2C_400KHZ);
    SSD1331_Begin();

    interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
    interrupt_init(); // Initialize the interrupt priorities

    DBG_PRINT_MAIN("\r\nBegin Program\r\n");

    while (1) {


        Delay10KTCYx(255);
        Delay10KTCYx(255);
    }
}
#endif