Rev 275 | Blame | Last modification | View Log | RSS feed
// <editor-fold defaultstate="collapsed" desc="Configuration Bits">
// PIC16F1825 Configuration Bit Settings
// CONFIG1
#pragma config FOSC = INTOSC // Oscillator Selection (INTOSC oscillator: I/O function on CLKIN pin)
#pragma config WDTE = OFF // Watchdog Timer Enable (WDT software controlled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)
#pragma config MCLRE = ON // MCLR Pin Function Select (MCLR/VPP pin function is digital input)
#pragma config CP = OFF // Flash Program Memory Code Protection (Program memory code protection is disabled)
#pragma config CPD = OFF // Data Memory Code Protection (Data memory code protection is disabled)
#pragma config BOREN = ON // Brown-out Reset Enable (Brown-out Reset enabled)
#pragma config CLKOUTEN = OFF // Clock Out Enable (CLKOUT function is disabled. I/O or oscillator function on the CLKOUT pin)
#pragma config IESO = ON // Internal/External Switchover (Internal/External Switchover mode is enabled)
#pragma config FCMEN = ON // Fail-Safe Clock Monitor Enable (Fail-Safe Clock Monitor is enabled)
// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protection (Write protection off)
#pragma config PLLEN = ON // PLL Enable (4x PLL enabled)
#pragma config STVREN = ON // Stack Overflow/Underflow Reset Enable (Stack Overflow or Underflow will cause a Reset)
#pragma config BORV = LO // Brown-out Reset Voltage Selection (Brown-out Reset Voltage (Vbor), low trip point selected.)
#pragma config LVP = OFF // Low-Voltage Programming Enable (High-voltage on MCLR/VPP must be used for programming)
// </editor-fold>
#include "defines.h"
#include "INTERRUPTS.h"
#include "IO.h"
#include "I2C1.h"
#include "I2C2.h"
#include "CPS.h"
#include "TLC59116.h"
#include "MCP23009.h"
persistent uint8_t op_state;
void Reset_Board(uint8_t next_state) {
op_state = next_state;
RESET();
}
uint8_t Get_Last_Reset(void) {
uint8_t ret;
if (PCONbits.nPOR == 0) {
ret = RESET_POR;
} else if (PCONbits.nBOR == 0) {
ret = RESET_BOR;
} else if (STATUSbits.nTO == 0) {
ret = RESET_WDT;
} else if (PCONbits.nRMCLR == 0) {
ret = RESET_MCLR;
} else if (PCONbits.STKOVF || PCONbits.STKUNF) {
ret = RESET_STK;
} else if (PCONbits.nRI == 0) {
ret = RESET_RST;
} else {
ret = RESET_POR;
}
PCON = 0x0F;
STATUSbits.nPD = 1;
STATUSbits.nTO = 1;
return ret;
}
uint8_t Read_Address(void) {
uint8_t ret = I2C1_SLAVE_PREFIX;
if (!I2C_ADDR_3_PORT)
ret |= 0x08;
if (!I2C_ADDR_2_PORT)
ret |= 0x04;
if (!I2C_ADDR_1_PORT)
ret |= 0x02;
if (!I2C_ADDR_0_PORT)
ret |= 0x01;
return ret;
}
BTN_STATUS btns;
LED_VALUES leds = {0x00};
int main(void) {
uint8_t buffer[32];
uint8_t result, length;
uint8_t i2c_slave_addr;
// uint8_t op_state;
uint8_t i;
// Set internal oscillator speed to 32MHz
OSCCONbits.SPLLEN = 1; // 4x PLL enable (overwritten by config bits)
OSCCONbits.IRCF = 0xE; // Base frequency @ 8MHz
OSCCONbits.SCS = 0b00; // System clock determined by config bits
// Initialize I/O
IO_Init();
uint8_t last_reset = Get_Last_Reset();
if (last_reset == RESET_POR || last_reset == RESET_BOR ||
last_reset == RESET_MCLR || last_reset == RESET_WDT ||
last_reset == RESET_STK) {
op_state = OP_STATE_IDLE;
}
// if (last_reset == RESET_RST) {
// op_state = OP_STATE_ACTIVE;
// }
i2c_slave_addr = Read_Address();
// Delay a bit to allow I2C lines to stabilize
__delay_ms(10);
// Initialize I2C1 in slave mode
I2C1_DATA i2c1_data;
I2C1_Init(&i2c1_data);
I2C1_Configure_Slave(i2c_slave_addr);
// Initialize I2C2 in master mode
I2C2_DATA i2c2_data;
I2C2_Init(&i2c2_data);
I2C2_Configure_Master(I2C_1MHZ);
CPS_DATA cps_data;
CPS_Init(&cps_data);
// Initialize interrupts
Interrupt_Init();
Interrupt_Enable();
MCP23009_Init(&btns);
MCP23009_Query();
TLC59116_Init();
// TLC59116_Write_All(&leds);
if (op_state == OP_STATE_IDLE) {
// IO_IOC_Enable();
Idle_Animation();
} else if (op_state == OP_STATE_ACTIVE) {
uint8_t button_R = 0, button_L = 0;
uint8_t dir_state = DIR_S;
leds.single.LED_S = DIR_BRIGHTNESS;
TLC59116_Write_All(&leds);
while (1) {
// Check if an I2C message was received
do {
result = I2C1_Get_Status();
} while (!result);
length = I2C1_Read_Buffer(buffer);
if (length == 1 && buffer[0] == CMD_RESET) {
Reset_Board(OP_STATE_IDLE);
} else if (length == 1 && buffer[0] == CMD_ACTIVE) {
Reset_Board(OP_STATE_ACTIVE);
} else if (length == 17 && buffer[0] == CMD_SET_LEDS) {
for (i = 0; i < 16; i++) {
leds.w[i] = buffer[i + 1];
}
// Reset the direction LEDs
if (dir_state == DIR_S)
leds.single.LED_S = DIR_BRIGHTNESS;
else if (dir_state == DIR_W)
leds.single.LED_W = DIR_BRIGHTNESS;
else if (dir_state == DIR_N)
leds.single.LED_N = DIR_BRIGHTNESS;
else if (dir_state == DIR_E)
leds.single.LED_E = DIR_BRIGHTNESS;
TLC59116_Write_All(&leds);
}
// Check if either capacitive buttons were pressed
if (cps_data.btn_pressed[0] && button_R == 0) {
// Right button went from unpressed -> pressed
dir_state = Direction_Rotate_CClockwise(dir_state);
TLC59116_Write_All(&leds);
}
if (cps_data.btn_pressed[1] && button_L == 0) {
// Left button went from unpressed -> pressed
dir_state = Direction_Rotate_Clockwise(dir_state);
TLC59116_Write_All(&leds);
}
// Save the previous button state
button_R = cps_data.btn_pressed[0];
button_L = cps_data.btn_pressed[1];
// Poll the hardware buttons
I2C2_Master_Restart(MCP23009_ADDR, MCP23009_GPIOA, 1);
do {
result = I2C2_Get_Status();
} while (!result);
length = I2C2_Read_Buffer(buffer);
btns.w = buffer[0];
// Change the direction according to the user's perspective
if (dir_state == DIR_W) {
uint8_t tmp = btns.BTN_R_S;
btns.BTN_R_S = btns.BTN_R_W;
btns.BTN_R_W = btns.BTN_R_N;
btns.BTN_R_N = btns.BTN_R_E;
btns.BTN_R_E = tmp;
} else if (dir_state == DIR_E) {
uint8_t tmp = btns.BTN_R_S;
btns.BTN_R_S = btns.BTN_R_E;
btns.BTN_R_E = btns.BTN_R_N;
btns.BTN_R_N = btns.BTN_R_W;
btns.BTN_R_W = tmp;
} else if (dir_state == DIR_N) {
uint8_t tmp = btns.BTN_R_S;
btns.BTN_R_S = btns.BTN_R_N;
btns.BTN_R_N = tmp;
tmp = btns.BTN_R_E;
btns.BTN_R_E = btns.BTN_R_W;
btns.BTN_R_W = tmp;
}
}
}
}
uint8_t Direction_Rotate_Clockwise(uint8_t dir_state) {
uint8_t ret;
switch (dir_state) {
case DIR_S:
leds.single.LED_S = 0x00;
leds.single.LED_W = DIR_BRIGHTNESS;
ret = DIR_W;
break;
case DIR_W:
leds.single.LED_W = 0x00;
leds.single.LED_N = DIR_BRIGHTNESS;
ret = DIR_N;
break;
case DIR_N:
leds.single.LED_N = 0x00;
leds.single.LED_E = DIR_BRIGHTNESS;
ret = DIR_E;
break;
case DIR_E:
leds.single.LED_E = 0x00;
leds.single.LED_S = DIR_BRIGHTNESS;
ret = DIR_S;
break;
}
return ret;
}
uint8_t Direction_Rotate_CClockwise(uint8_t dir_state) {
uint8_t ret;
switch (dir_state) {
case DIR_S:
leds.single.LED_S = 0x00;
leds.single.LED_E = DIR_BRIGHTNESS;
ret = DIR_E;
break;
case DIR_E:
leds.single.LED_E = 0x00;
leds.single.LED_N = DIR_BRIGHTNESS;
ret = DIR_N;
break;
case DIR_N:
leds.single.LED_N = 0x00;
leds.single.LED_W = DIR_BRIGHTNESS;
ret = DIR_W;
break;
case DIR_W:
leds.single.LED_W = 0x00;
leds.single.LED_S = DIR_BRIGHTNESS;
ret = DIR_S;
break;
}
return ret;
}
void Check_I2C_Idle(void) {
uint8_t buffer[32];
uint8_t result, length, i;
// Check if an I2C message was received
result = I2C1_Get_Status();
if (result) {
length = I2C1_Read_Buffer(buffer);
if (length == 1 && buffer[0] == CMD_RESET) {
Reset_Board(OP_STATE_IDLE);
} else if (length == 1 && buffer[0] == CMD_ACTIVE) {
Reset_Board(OP_STATE_ACTIVE);
}
}
}
void Idle_Animation(void) {
LED_VALUES leds = {0};
uint8_t led_direction_bar[8] = {1,0,0,0,0,0,0,0};
uint8_t led_direction_dir[8] = {1,0,0,0};
uint8_t led_direction_ind[8] = {1,0,0,0};
uint8_t led_8_high_thres = 0x80; // Max brightness of the middle section
uint8_t led_8_next_thresh = 0x40; // Threshold to start the next LED
uint8_t led_4_high_thres = 0x80; // Max brightness of the side sections
uint8_t led_4_next_thresh = 0x74; // Threshold to start the next LED
uint8_t i, next_led;
for (i = 0; i < 16; i++) leds.w[i] = 0x00;
while (1) {
// Check to see if a new message was received
Check_I2C_Idle();
// Update the LEDs in the middle section
for (i = 0; i < 8; i++) {
// Change the LED brightness depending on its direction
if (led_direction_bar[i] == 1) {
leds.w[i]++;
} else if (led_direction_bar[i] == 2) {
leds.w[i]--;
}
// Change direction if peak brightness is reached
// When the brightness reaches a middle threshold, start
// increasing the brightness of the next LED
if (led_direction_bar[i] == 1 && leds.w[i] == led_8_high_thres) {
led_direction_bar[i] = 2;
} else if (led_direction_bar[i] == 1 && leds.w[i] == led_8_next_thresh) {
next_led = (i == 7) ? 0 : i + 1;
led_direction_bar[next_led] = 1;
} else if (led_direction_bar[i] == 2 && leds.w[i] == 0x00) {
led_direction_bar[i] = 0;
}
}
// Update the LEDs in the right section
for (i = 0; i < 4; i++) {
// Change the LED brightness depending on its direction
if (led_direction_dir[i] == 1) {
leds.w[i+8]++;
} else if (led_direction_dir[i] == 2) {
leds.w[i+8]--;
}
// Change direction if peak brightness is reached
// When the brightness reaches a middle threshold, start
// increasing the brightness of the next LED
if (led_direction_dir[i] == 1 && leds.w[i+8] == led_4_high_thres) {
led_direction_dir[i] = 2;
} else if (led_direction_dir[i] == 1 && leds.w[i+8] == led_4_next_thresh) {
next_led = (i == 3) ? 0 : i + 1;
led_direction_dir[next_led] = 1;
} else if (led_direction_dir[i] == 2 && leds.w[i+8] == 0x00) {
led_direction_dir[i] = 0;
}
}
// Update the LEDs in the left section
for (i = 0; i < 4; i++) {
// Change the LED brightness depending on its direction
if (led_direction_ind[i] == 1) {
leds.w[i+12]++;
} else if (led_direction_ind[i] == 2) {
leds.w[i+12]--;
}
// Change direction if peak brightness is reached
// When the brightness reaches a middle threshold, start
// increasing the brightness of the next LED
if (led_direction_ind[i] == 1 && leds.w[i+12] == led_4_high_thres) {
led_direction_ind[i] = 2;
} else if (led_direction_ind[i] == 1 && leds.w[i+12] == led_4_next_thresh) {
next_led = (i == 3) ? 0 : i + 1;
led_direction_ind[next_led] = 1;
} else if (led_direction_ind[i] == 2 && leds.w[i+12] == 0x00) {
led_direction_ind[i] = 0;
}
}
// Write the LED values to the controller
TLC59116_Write_All(&leds);
// Delay a bit to slow down the animation
__delay_ms(1);
}
}