Blame | Last modification | View Log | RSS feed
#include "DEFINES.h"
#include "INTERRUPTS.h"
#include "PWM.h"
#include "IOC.h"
#include "EUSART.h"
// <editor-fold defaultstate="collapsed" desc="Configuration Registers">
// CONFIG1
#pragma config FOSC = HS // Oscillator Selection (HS Oscillator, High-speed crystal/resonator connected between OSC1 and OSC2 pins)
#pragma config WDTE = OFF // Watchdog Timer Enable (WDT disabled)
#pragma config PWRTE = ON // Power-up Timer Enable (PWRT enabled)
#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR/VPP pin function is digital input)
#pragma config CP = OFF // Flash Program Memory Code Protection (Program memory code protection is disabled)
#pragma config CPD = OFF // Data Memory Code Protection (Data memory code protection is disabled)
#pragma config BOREN = ON // Brown-out Reset Enable (Brown-out Reset enabled)
#pragma config CLKOUTEN = OFF // Clock Out Enable (CLKOUT function is disabled. I/O or oscillator function on the CLKOUT pin)
#pragma config IESO = OFF // Internal/External Switchover (Internal/External Switchover mode is disabled)
#pragma config FCMEN = ON // Fail-Safe Clock Monitor Enable (Fail-Safe Clock Monitor is enabled)
// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protection (Write protection off)
#pragma config PLLEN = OFF // PLL Enable (4x PLL disabled)
#pragma config STVREN = ON // Stack Overflow/Underflow Reset Enable (Stack Overflow or Underflow will cause a Reset)
#pragma config BORV = LO // Brown-out Reset Voltage Selection (Brown-out Reset Voltage (Vbor), low trip point selected.)
#pragma config LVP = OFF // Low-Voltage Programming Enable (High-voltage on MCLR/VPP must be used for programming)
// </editor-fold>
int main() {
// Initialize oscillator to external crystal (20Mhz)
OSCCONbits.SCS = 0b00;
OSCCONbits.SPLLEN = 0b0;
OSCCONbits.IRCF = 0b1111;
// Set all pins to digital I/O
ANSELA = 0x00;
// Disable pull-ups
OPTION_REGbits.nWPUEN = 1;
WPUA = 0x0;
// Configure alternate pin function register
APFCONbits.RXDTSEL = 0; // RX on RA1
APFCONbits.TXCKSEL = 0; // TX on RA0
APFCONbits.CCP1SEL = 0; // CCP1 on RA2
// Delay for a bit to ensure oscillator has started
__delay_ms(10);
// Configure and enable interrupts
Interrupt_Enable();
// Configure and enable peripherals
PWM_Init();
IOC_Init();
UART_Init();
uint8_t recvBuffer[32];
uint8_t txOk[] = "Ok!\n";
uint8_t txError[] = "Error!\n";
/* Protocol format as follows:
* Byte 0 = OPCODE
* 0x1 = Set frequency
* Bytes 1-4 = 32 bit unsigned value
* 0x2 = Set duty cycle
* Byte 1 = 8 bit unsigned value (high value)
* Byte 2 = 8 bit unsigned value (low value)
* 0x3 = Set pattern
* Bytes 1-2 = 16 bit pattern (transmits MSB first)
* Everything else = nop
*/
while(1) {
uint8_t recvBytes = UART_Read(recvBuffer);
if (recvBytes != 0) {
// Process op-code for setting frequency
if (recvBuffer[0] == 0x1 && recvBytes == 5) {
uint32_t byte0 = recvBuffer[1];
byte0 <<= 24;
uint32_t byte1 = recvBuffer[2];
byte1 <<= 16;
uint32_t byte2 = recvBuffer[3];
byte2 <<= 8;
uint32_t freq = 0;
freq |= byte0;
freq |= byte1;
freq |= byte2;
freq |= recvBuffer[4];
// Ensure that received value falls within working bounds
if (freq >= 20000 && freq <= 200000) {
Set_PWM_Frequency(freq);
UART_Write(txOk, 4);
} else {
UART_Write(txError, 7);
}
UART_Reset_RX();
} else if (recvBuffer[0] == 0x2 && recvBytes == 3) {
// Ensure that received value falls within working bounds
if (recvBuffer[1] <= 100 && recvBuffer[2] <= 100) {
Set_PWM_Duty_Cycle(recvBuffer[1], recvBuffer[2]);
UART_Write(txOk, 4);
} else {
UART_Write(txError, 7);
}
UART_Reset_RX();
} else if (recvBuffer[0] == 0x3 && recvBytes == 3) {
uint16_t byte0 = recvBuffer[1];
byte0 <<= 8;
uint16_t pattern = 0;
pattern |= byte0;
pattern |= recvBuffer[2];
Set_PWM_Pattern(pattern);
UART_Reset_RX();
UART_Write(txOk, 4);
} else if (recvBuffer[0] == 0x0 || recvBuffer[0] > 0x03 || recvBytes > 5) {
UART_Reset_RX();
}
}
}
}