Rev 234 | Blame | Last modification | View Log | RSS feed
// <editor-fold defaultstate="collapsed" desc="Configuration Bits">
/* ------------------------------------------------------------ */
/* PIC32 Configuration Settings */
/* ------------------------------------------------------------ */
/* Oscillator Settings */
#pragma config FNOSC = PRIPLL // Oscillator Selection Bits
#pragma config POSCMOD = EC // Primary Oscillator Configuration
#pragma config FPLLIDIV = DIV_2 // PLL Input Divider
#pragma config FPLLMUL = MUL_20 // PLL Multiplier
#pragma config FPLLODIV = DIV_1 // PLL Output Divider
#pragma config FPBDIV = DIV_1 // Peripheral Clock Divisor (timers/UART/SPI/I2C)
#pragma config FSOSCEN = OFF // Secondary Oscillator Enable
/* Clock Control Settings */
#pragma config IESO = OFF // Internal/External Clock Switch Over
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection
#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the OSCO Pin
/* USB Settings */
#pragma config UPLLEN = ON // USB PLL Enable
#pragma config UPLLIDIV = DIV_2 // USB PLL Input Divider
#pragma config FVBUSONIO = OFF // USB VBUS ON Selection
#pragma config FUSBIDIO = OFF // USB USID Selection
/* Other Peripheral Device Settings */
#pragma config FWDTEN = ON // Watchdog Timer Enable
#pragma config WDTPS = PS1048576 // Watchdog Timer Postscaler (1048.576s)
#pragma config FSRSSEL = PRIORITY_7 // SRS Interrupt Priority
#pragma config FCANIO = OFF // CAN I/O Pin Select (default/alternate)
#pragma config FETHIO = ON // Ethernet I/O Pin Select (default/alternate)
#pragma config FMIIEN = OFF // Ethernet MII/RMII select (OFF=RMII)
/* Code Protection Settings */
#pragma config CP = OFF // Code Protect
#pragma config BWP = OFF // Boot Flash Write Protect
#pragma config PWP = OFF // Program Flash Write Protect
/* Debug Settings */
#pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel Select (on-board debugger)
/* ------------------------------------------------------------ */
// </editor-fold>
#include "defines.h"
#include "UART1.h"
#include "SPI1.h"
#include "SPI4.h"
#include "I2C1.h"
#include "TIMER4.h"
#include "TIMER5.h"
#include "CUBE.h"
#include "BTN.h"
#include "ANIMATIONS.h"
void BTN1_Interrupt(void);
void BTN2_Interrupt(void);
void BTN3_Interrupt(void);
void Delay_MS(uint32_t delay_ms) {
// Delays the CPU for the given amount of time.
// Note: Watch out for integer overflow! (max delay_ms = 107374) ??
uint32_t delay = delay_ms * MS_TO_CT_TICKS;
uint32_t startTime = ReadCoreTimer();
while ((uint32_t)(ReadCoreTimer() - startTime) < delay) {};
}
void Delay_US(uint32_t delay_us) {
// Delays the CPU for the given amount of time.
// Note: Watch out for integer overflow!
uint32_t delay = delay_us * US_TO_CT_TICKS;
uint32_t startTime = ReadCoreTimer();
while ((uint32_t)(ReadCoreTimer() - startTime) < delay) {};
}
int32_t main() {
// WARNING!! THIS BOARD WILL RESET EVERY 1048.576s DUE TO THE WDT!!
/* Configure the target for maximum performance at 80 MHz. */
// Note: This overrides the peripheral clock to 80Mhz regardless of config
SYSTEMConfigPerformance(CPU_CLOCK_HZ);
// Configure the interrupts for multiple vectors
INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);
// Set all analog I/O pins to digital
AD1PCFGSET = 0xFFFF;
LED1_TRIS = 0;
LED2_TRIS = 0;
LED3_TRIS = 0;
LED4_TRIS = 0;
LED1_LAT = 0;
LED2_LAT = 0;
LED3_LAT = 0;
LED4_LAT = 0;
// Initialize the SPI1 module
SPI1_DATA spi_1_data;
SPI1_Init(&spi_1_data, NULL);
// Initialize the SPI4 module
SPI4_DATA spi_4_data;
SPI4_Init(&spi_4_data);
I2C1_DATA i2c_1_data;
I2C1_Init(&i2c_1_data, I2C1_400KHZ, 0x20);
// Initialize the UART1 module
UART1_DATA uart_data;
UART1_Init(&uart_data, &Cube_Data_In);
// Initializs the PWM2 output to 20MHz
PWM2_Init();
PWM2_Start();
// Initialize the cube variables
CUBE_DATA cube_data;
Cube_Init(&cube_data, 0x40);
// Start the cube update layer interrupt
// 2083 = 60Hz, 500 = 250Hz, 250 = 500Hz
TIMER5_DATA timer_5_data;
TIMER5_Init(&timer_5_data, &Cube_Timer_Interrupt, 500);
TIMER5_Start();
// Start the overlay rotation interrupt
TIMER4_DATA timer_4_data;
TIMER4_Init(&timer_4_data, &Cube_Text_Interrupt, 90000);
// Process button inputs
BTN_DATA btn_data;
BTN_Init(&btn_data, &BTN1_Interrupt, &BTN2_Interrupt, &BTN3_Interrupt);
// Begin display
// Cube_Set_All(RED);
// Delay_MS(2000);
// Cube_Set_All(GREEN);
// Delay_MS(2000);
// Cube_Set_All(BLUE);
// Delay_MS(2000);
// Animation_Pseudo_Random_Colors(10,300);
// int8_t start_text[] = "Cube Initialized\r\n";
// UART1_Write(start_text, 18);
// Set the overlay text
uint8_t text_string[] = "Welcome to the AMP Lab ";
Cube_Text_Init(text_string, 27, 0xFF, 0xFF, 0xFF);
TIMER4_Start();
// Loop through some preset animations
uint8_t buffer1[2];
uint8_t buffer2[2];
uint8_t result, length;
while(1) {
I2C1_Master_Restart(0x24, 0xA, 1);
do {
result = I2C1_Get_Status();
} while (!result);
if (result == I2C1_RECV_OK) {
LED1_LAT = 1;
length = I2C1_Read_Buffer(buffer1);
buffer1[1] = ~buffer1[0];
buffer1[0] = 0xB;
} else {
LED1_LAT = 0;
}
I2C1_Master_Restart(0x25, 0xA, 1);
do {
result = I2C1_Get_Status();
} while (!result);
if (result == I2C1_RECV_OK) {
LED2_LAT = 1;
length = I2C1_Read_Buffer(buffer2);
buffer2[1] = ~buffer2[0];
buffer2[0] = 0xB;
} else {
LED2_LAT = 0;
}
I2C1_Master_Send(0x24, buffer1, 2);
do {
result = I2C1_Get_Status();
} while (!result);
I2C1_Master_Send(0x25, buffer2, 2);
do {
result = I2C1_Get_Status();
} while (!result);
Delay_MS(1);
// Animation_Solid_Colors(2,300);
// Animation_Layer_Alternate(2,300);
// Animation_Pixel_Alternate(1,200);
// Animation_Full_Color_Sweep(2,1000);
// Animation_Row_Column_Sweep(2,40);
// Animation_Cube_In_Cube(4,300);
// Animation_Double_Rotation(2,40);
// Animation_Pseudo_Random_Colors(10,300);
// Animation_Random_Colors(10,300);
// ClearWDT(); // Clear the WDT if we dont want the board to reset
}
}
// Function call on button 1 press to change refresh rate
void BTN1_Interrupt(void) {
static uint8_t state;
state = (state == 4) ? 0 : state + 1;
TIMER5_Stop();
switch (state) {
case 0:
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 500); // 250Hz
break;
case 1:
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 2083); // 60Hz
break;
case 2:
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 4166); // 30Hz
break;
case 3:
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 12498); // 10Hz
break;
case 4:
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 24996); // 5Hz
break;
}
TIMER5_Start();
}
// Function call on button 2 press to change brightness
void BTN2_Interrupt(void) {
static uint8_t state;
state = (state == 6) ? 0 : state + 1;
TIMER5_Stop();
Delay_MS(1); // Need to wait for all SPI writes to complete
uint8_t BC;
switch (state) {
case 0:
BC = 0x01;
break;
case 1:
BC = 0x08;
break;
case 2:
BC = 0x10;
break;
case 3:
BC = 0x20;
break;
case 4:
BC = 0x40;
break;
case 5:
BC = 0x80;
break;
case 6:
BC = 0xFF;
break;
}
Cube_Write_DCS(BC);
TIMER5_Start();
}
// Function call on button 3 press to change text scroll speed
void BTN3_Interrupt(void) {
static uint8_t state;
state = (state == 4) ? 0 : state + 1;
TIMER4_Stop();
switch (state) {
case 0:
TIMER4_Init(NULL, &Cube_Text_Interrupt, 209712);
break;
case 1:
TIMER4_Init(NULL, &Cube_Text_Interrupt, 180000);
break;
case 2:
TIMER4_Init(NULL, &Cube_Text_Interrupt, 150000);
break;
case 3:
TIMER4_Init(NULL, &Cube_Text_Interrupt, 120000);
break;
case 4:
TIMER4_Init(NULL, &Cube_Text_Interrupt, 90000);
break;
}
TIMER4_Start();
}