Rev 158 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include <xc.h>
#include <stdio.h>
#include <string.h>
#include "defines.h"
#include "base_SPI.h"
#include "base_UART.h"
static SPI_DATA *spi_data_p;
void SPI2_Init(SPI_DATA *data, char speed) {
spi_data_p = data;
// Set up SPI2 with specified pins
RPINR22 = PPS_SPI2_CLK_IN; // SPI2 CLK Input
PPS_SPI2_CLK_OUT = 11; // SPI2 CLK Output
#ifndef SPI2_WRITE_ONLY
RPINR21 = PPS_SPI2_MISO; // SPI2 Data Input
SPI_MISO_TRIS = 1; // SPI2 data in pin (MISO)
#endif
SPI_CLK_TRIS = 0; // SPI2 clock pin
PPS_SPI2_MOSI = 10; // SPI2 Data Output (MOSI)
SPI_MOSI_TRIS = 0; // SPI2 data out pin (MOSI)
SPI_SLAVE_SELECT_TRIS = 0; // SPI2 slave select
SPI_SLAVE_SELECT_LAT = 1; // SPI2 SS high (Idle)
SPI_RESET_TRIS = 0; // SPI2 reset
SPI_RESET_LAT = 1; // SPI2 reset active low
SPI_DC_SELECT_TRIS = 0; // SPI2 D/C select
SPI_DC_SELECT_LAT = 0;
SSP2STATbits.SMP = 0; // Input is sampled in the middle of data output time
SSP2STATbits.CKE = 0; // Transmit occurs on transition from Idle to active clock state
SSP2CON1bits.SSPM = speed;
SSP2CON1bits.CKP = 1; // Idle state for clock is a high level
SSP2CON1bits.SSPEN = 1; // Enable MSSP module
#ifdef SPI2_USE_INTERRUPT
PIE3bits.SSP2IE = 1; // Enable MSSP2 interrupt
#else
PIE3bits.SSP2IE = 0;
#endif
#ifndef SPI2_WRITE_ONLY
spi_data_p->buffer_in_len = 0;
spi_data_p->buffer_in_read_ind = 0;
spi_data_p->buffer_in_write_ind = 0;
#endif
spi_data_p->buffer_out_ind = 0;
spi_data_p->buffer_out_len = 0;
}
void SPI2_Write(char *msg, unsigned int length) {
unsigned int i = 0;
#ifdef SPI2_USE_INTERRUPT
spi_data_p->buffer_out_len = length;
spi_data_p->buffer_out_ind = 1;
for (i = 0; i < length; i++) {
spi_data_p->buffer_out[i] = msg[i];
}
SPI_SLAVE_SELECT_LAT = 0; // Bring SS line low
SSP2BUF = spi_data_p->buffer_out[0]; // Transmit first byte
#else
SPI_SLAVE_SELECT_LAT = 0;
while (i != length) {
SSP2BUF = msg[i];
i++;
while (!SSP2STATbits.BF);
#ifndef SPI2_WRITE_ONLY
spi_data_p->buffer_in[spi_data_p->buffer_in_write_ind] = SSP2BUF;
if (spi_data_p->buffer_in_write_ind == MAXSPIBUF - 1) {
spi_data_p->buffer_in_write_ind = 0;
} else {
spi_data_p->buffer_in_write_ind++;
}
spi_data_p->buffer_in_len++;
#else
// Read data in buffer to clear it
char tmp = SSP2BUF;
#endif
}
SPI_SLAVE_SELECT_LAT = 1;
#endif
}
void SPI2_Write_Repeat(char c, unsigned int length) {
#ifdef SPI2_USE_INTERRUPT
// TODO Implement interrupts for SPI2
#else
unsigned int i = 0;
SPI_SLAVE_SELECT_LAT = 0;
while (i != length) {
SSP2BUF = c;
i++;
while (!SSP2STATbits.BF);
#ifndef SPI2_WRITE_ONLY
spi_data_p->buffer_in[spi_data_p->buffer_in_write_ind] = SSP2BUF;
if (spi_data_p->buffer_in_write_ind == MAXSPIBUF - 1) {
spi_data_p->buffer_in_write_ind = 0;
} else {
spi_data_p->buffer_in_write_ind++;
}
spi_data_p->buffer_in_len++;
#else
// Read data in buffer to clear it
char tmp = SSP2BUF;
#endif
}
SPI_SLAVE_SELECT_LAT = 1;
#endif
}
void SPI2_DMA_Init(void) {
DMACON1bits.SSCON0 = 0;
DMACON1bits.SSCON1 = 0; // DYLINTEN is software programmable
DMACON1bits.TXINC = 1; // TXADDR is automatically incremented
DMACON1bits.RXINC = 0; // RXADDR is not automatically incremented
DMACON1bits.DUPLEX0 = 1;
DMACON1bits.DUPLEX1 = 0; // Half-duplex mode, transmission only
DMACON1bits.DLYINTEN = 0; // Interrupt is disabled
DMACON2bits.DLYCYC = 0b0000; // Delay time of 1 cycle between bytes
DMACON2bits.INTLVL = 0b0000; // Interrupt on transfer complete
}
void SPI2_DMA_Start(unsigned int length, void* TXADDR, void* RXADDR) {
// Set length of message to transmit
DMABCH = (char)(length-1 >> 8);
DMABCL = (char)(length-1);
// Set sourcing address
TXADDRH = (char)((int)TXADDR >> 8);
TXADDRL = (char)((int)TXADDR);
// Set receiving address
RXADDRH = (char)((int)RXADDR >> 8);
RXADDRL = (char)((int)RXADDR);
DMACON1bits.DMAEN = 1; // Start transmission
}
#ifndef SPI2_WRITE_ONLY
void SPI2_Recv_Interrupt_Handler() {
char c;
if (SSP2STATbits.BF) { // Check if data receive flag is set
if (spi_data_p->buffer_in_len == MAXSPIBUF - 1) {
char output[64];
sprintf(output, "SPI2: (ERROR) buffer overflow\r\n");
DBG_PRINT_SPI(output, strlen(output));
c = SSP2BUF; // Read SSP2BUF to clear it
} else {
// Save received data into buffer
spi_data_p->buffer_in[spi_data_p->buffer_in_write_ind] = SSP2BUF;
if (spi_data_p->buffer_in_write_ind == MAXSPIBUF - 1) {
spi_data_p->buffer_in_write_ind = 0;
} else {
spi_data_p->buffer_in_write_ind++;
}
spi_data_p->buffer_in_len++;
// Put next byte in SSP2BUF for transmit
if (spi_data_p->buffer_out_ind != spi_data_p->buffer_out_len) {
SSP2BUF = spi_data_p->buffer_out[spi_data_p->buffer_out_ind];
spi_data_p->buffer_out_ind++;
} else {
SPI_SLAVE_SELECT_LAT = 1; // Bring SS line high
spi_data_p->buffer_out_ind = 0;
spi_data_p->buffer_out_len = 0;
}
}
}
}
void SPI2_Read(char length) {
#ifdef SPI2_USE_INTERRUPT
spi_data_p->buffer_out_len = length;
spi_data_p->buffer_out_ind = 1;
for (char i = 0; i < length; i++) {
spi_data_p->buffer_out[i] = 0x0;
}
SPI_SLAVE_SELECT_LAT = 0; // Bring SS line low
SSP2BUF = spi_data_p->buffer_out[0]; // Transmit first byte
#else
SPI_SLAVE_SELECT_LAT = 0;
for (char i = 0; i < length; i++) {
SSP2BUF = 0x0;
while (!SSP2STATbits.BF);
spi_data_p->buffer_in[spi_data_p->buffer_in_write_ind] = SSP2BUF;
if (spi_data_p->buffer_in_write_ind == MAXSPIBUF - 1) {
spi_data_p->buffer_in_write_ind = 0;
} else {
spi_data_p->buffer_in_write_ind++;
}
spi_data_p->buffer_in_len++;
}
SPI_SLAVE_SELECT_LAT = 1;
#endif
}
char SPI2_Buffer_Len() {
return spi_data_p->buffer_in_len;
}
char SPI2_Read_Buffer(char* buffer) {
char i = 0;
while (spi_data_p->buffer_in_len != 0) {
buffer[i] = spi_data_p->buffer_in[spi_data_p->buffer_in_read_ind];
i++;
if (spi_data_p->buffer_in_read_ind == MAXSPIBUF - 1) {
spi_data_p->buffer_in_read_ind = 0;
} else {
spi_data_p->buffer_in_read_ind++;
}
spi_data_p->buffer_in_len--;
}
return i;
}
#endif