Rev 315 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
// <editor-fold defaultstate="collapsed" desc="Configuration Bits">
// PIC16F1825 Configuration Bit Settings
// CONFIG1
#pragma config FOSC = INTOSC // Oscillator Selection (INTOSC oscillator: I/O function on CLKIN pin)
#pragma config WDTE = OFF // Watchdog Timer Enable (WDT enabled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)
#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR/VPP pin function is digital input)
#pragma config CP = OFF // Flash Program Memory Code Protection (Program memory code protection is disabled)
#pragma config CPD = OFF // Data Memory Code Protection (Data memory code protection is disabled)
#pragma config BOREN = ON // Brown-out Reset Enable (Brown-out Reset enabled)
#pragma config CLKOUTEN = OFF // Clock Out Enable (CLKOUT function is disabled. I/O or oscillator function on the CLKOUT pin)
#pragma config IESO = ON // Internal/External Switchover (Internal/External Switchover mode is enabled)
#pragma config FCMEN = ON // Fail-Safe Clock Monitor Enable (Fail-Safe Clock Monitor is enabled)
// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protection (Write protection off)
#pragma config PLLEN = ON // PLL Enable (4x PLL enabled)
#pragma config STVREN = ON // Stack Overflow/Underflow Reset Enable (Stack Overflow or Underflow will cause a Reset)
#pragma config BORV = LO // Brown-out Reset Voltage Selection (Brown-out Reset Voltage (Vbor), low trip point selected.)
#pragma config LVP = OFF // Low-Voltage Programming Enable (High-voltage on MCLR/VPP must be used for programming)
// </editor-fold>
#include "defines.h"
#include "INTERRUPTS.h"
#include "STEPPER.h"
#include "IOC.h"
#include "SPI.h"
#include "ADC.h"
#include "OLED_SSD1306.h"
#include "TIMER.h"
#include <stdio.h>
void Pins_Init(void) {
// RA0 and RA1 pins as analog input
ANSELA = 0x3;
ANSELC = 0x0;
// // Enable weak pull-up if WPU bit is set
// OPTION_REGbits.nWPUEN = 0;
// SDO1 on RC2
APFCON0bits.SDOSEL = 0;
// Stepper Driver
STEP_TRIS = 0;
STEP_LAT = 0;
M0_TRIS = 0;
M0_LAT = 0;
M1_TRIS = 0;
M1_LAT = 0;
M2_TRIS = 0;
M2_LAT = 0;
// I/O
SW_1_TRIS = 1;
SW_1_INLVL = 1;
SW_2_TRIS = 1;
SW_2_INLVL = 1;
STEP_CURRENT_TRIS = 1;
POT_CURRENT_TRIS = 1;
// SPI
SPI_MOSI_TRIS = 0;
SPI_CLK_TRIS = 0;
SPI_DC_SELECT_TRIS = 0;
SPI_DC_SELECT_LAT = 0;
SPI_RESET_TRIS = 0;
SPI_RESET_LAT = 0;
}
OPERATING_MODE currMode;
int main(void) {
// Set internal oscillator speed to 32MHz
OSCCONbits.SPLLEN = 1; // 4x PLL enable (overwritten by config bits)
OSCCONbits.IRCF = 0xE; // Base frequency @ 8MHz
OSCCONbits.SCS = 0b00; // System clock determined by config bits
// Initialize I/O
Pins_Init();
IOC_Init();
ADC_Init();
TIMER_DATA timer_data;
TIMER_Init(&timer_data);
SPI_DATA spi_data;
SPI_Init(&spi_data, SPI2_FOSC_16);
SSD1306_DATA ssd1306_data;
SSD1306_Init(&ssd1306_data);
Interrupt_Init();
Interrupt_Enable();
currMode = SINGLE_STEP;
SSD1306_Begin(SSD1306_SWITCHCAPVCC);
while(1) {
Update_OLED();
// __delay_ms(1);
}
}
void Set_Next_Mode() {
switch (currMode) {
case SINGLE_STEP:
currMode = AUTO_STEP;
break;
case AUTO_STEP:
currMode = SET_MICROSTEP;
break;
case SET_MICROSTEP:
default:
currMode = SINGLE_STEP;
break;
}
}
OPERATING_MODE Get_Cur_Mode(void) {
return currMode;
}
void Update_OLED(void) {
SSD1306_Clear_Display();
SSD1306_Set_Text_Size(2);
SSD1306_Set_Text_Wrap(0);
switch (currMode) {
case SINGLE_STEP:
Draw_Manual_Text(1);
Draw_Auto_Text(0);
Draw_Step_Text(STEPPER_Get_Cur_Step(), 0);
break;
case AUTO_STEP:
Draw_Manual_Text(0);
Draw_Auto_Text(1);
Draw_Step_Text(STEPPER_Get_Cur_Step(), 0);
break;
case SET_MICROSTEP:
Draw_Manual_Text(0);
Draw_Auto_Text(0);
Draw_Step_Text(STEPPER_Get_Cur_Step(), 1);
break;
}
Draw_Stepper_Current();
Draw_Pot_Value();
SSD1306_Display();
}
void Draw_Manual_Text(uint8_t selected) {
// Draw and/or highlight the stepping mode in the top left corner
uint8_t stringManual[] = "MANUAL";
if (selected) {
SSD1306_Fill_Rect(0, 0, 75, 16, 1);
SSD1306_Set_Text_Color(0);
} else {
SSD1306_Set_Text_Color(1);
}
SSD1306_Set_Cursor(3, 1);
SSD1306_Write_String(stringManual, 6);
}
void Draw_Auto_Text(uint8_t selected) {
// Draw and/or highlight the stepping mode in the top right corner
uint8_t stringAuto[] = "AUTO";
if (selected) {
SSD1306_Fill_Rect(76, 0, 53, 16, 1);
SSD1306_Set_Text_Color(0);
} else {
SSD1306_Set_Text_Color(1);
}
SSD1306_Set_Cursor(79, 1);
SSD1306_Write_String(stringAuto, 4);
}
void Draw_Stepper_Current() {
// Draw the stepper motor current draw in the bottom right corner
uint8_t buffer[6] = {0};
uint16_t potVoltage = ADC_Read(STEP_ADC_CHANNEL);
// Compute current from voltage reading (2x)
uint16_t current = potVoltage * 0.3222 * 2;
uint8_t preDecimal = current / 100;
uint8_t postDecimal = current % 100;
sprintf(buffer, "%1d.%02dA", preDecimal, postDecimal);
SSD1306_Set_Text_Color(1);
SSD1306_Set_Cursor(67, 17);
SSD1306_Write_String(buffer, 5);
}
void Draw_Pot_Value() {
// Draw a line indicating auto rotation delay
uint8_t potVoltage = ADC_Read(POT_ADC_CHANNEL) >> 4;
SSD1306_Draw_Line(127, 31, 127 - potVoltage, 31, 1);
}
void Draw_Step_Text(STEPPER_MICROSTEP step, uint8_t selected) {
// Draw and/or highlight the stepping in the bottom left corner
uint8_t stringStepping32[] = "1/32";
uint8_t stringStepping16[] = "1/16";
uint8_t stringStepping8[] = "1/8";
uint8_t stringStepping4[] = "1/4";
uint8_t stringStepping2[] = "1/2";
uint8_t stringStepping1[] = "1/1";
if (selected) {
SSD1306_Fill_Rect(0, 16, 52, 16, 1);
SSD1306_Set_Text_Color(0);
} else {
SSD1306_Set_Text_Color(1);
}
if (step == STEP_1_32) {
SSD1306_Set_Cursor(2, 17);
SSD1306_Write_String(stringStepping32, 4);
} else if (step == STEP_1_16) {
SSD1306_Set_Cursor(2, 17);
SSD1306_Write_String(stringStepping16, 4);
} else if (step == STEP_1_8) {
SSD1306_Set_Cursor(8, 17);
SSD1306_Write_String(stringStepping8, 3);
} else if (step == STEP_1_4) {
SSD1306_Set_Cursor(8, 17);
SSD1306_Write_String(stringStepping4, 3);
} else if (step == STEP_1_2) {
SSD1306_Set_Cursor(8, 17);
SSD1306_Write_String(stringStepping2, 3);
} else if (step == STEP_1_1) {
SSD1306_Set_Cursor(8, 17);
SSD1306_Write_String(stringStepping1, 3);
}
}