Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include "PWM.h"
#include "INTERRUPTS.h"
static volatile uint8_t computedFrequency = 0;
static volatile uint8_t computedDutyCycleHigh_UpperByte = 0;
static volatile uint8_t computedDutyCycleHigh_LowerBits = 0;
static volatile uint8_t computedDutyCycleLow_UpperByte = 0;
static volatile uint8_t computedDutyCycleLow_LowerBits = 0;
static volatile uint8_t savedDutyCycleHigh = PWM_DEFAULT_HIGH_CYCLE;
static volatile uint8_t savedDutyCycleLow = PWM_DEFAULT_LOW_CYCLE;
static volatile uint16_t savedPattern = 0xAAAA;
void PWM_Init() {
// Initialize CCP1 / Timer 2
CCP1_TRIS = 1; // PWM output starts disabled
CCP1CONbits.P1M = 0b00; // Single output, P1A modulated only
CCP1CONbits.CCP1M = 0b1100; // PWM Mode, P1A active-high, P1B active-high
PIR1bits.TMR2IF = 0; // Clear Timer 2 interrupt flag
TMR2 = 0x0;
Set_PWM_Frequency(PWM_DEFAULT_FREQ);
Set_PWM_Duty_Cycle(PWM_DEFAULT_HIGH_CYCLE, PWM_DEFAULT_LOW_CYCLE);
}
void Set_PWM_Frequency(uint32_t frequency) {
// Timer 2 clocked at FOSC/4 (20 Mhz)
// Prescaler 1:1 = minimum frequency of 19,532 Hz
// Prescaler 1:4 = minimum frequency of 4,883 Hz
// Prescaler 1:16 = minimum frequency of 1,221 Hz
// Prescaler 1:64 = minimum frequency of 306 Hz
// PWM Period = [PR2 + 1] * 4 * TOSC * Prescale
// = [PR2 + 1] * 4 * (1/FOSC) * Prescale
// = ([PR2 + 1] * 4 * Prescale) / FOSC
// PWM Freq = 1/(PWM Period)
// = 1/(PR2 + 1) * 1/4 * FOSC * 1/Prescale)
// = FOSC / ([PR2 + 1] * 4 * Prescale)
// PR2 = (FOSC / [(PWM Freq) * 4 * Presccale]) - 1
uint8_t preScaleValue;
if (frequency > 19532) {
preScaleValue = 1;
T2CONbits.T2CKPS = 0b00;
} else if (frequency > 4883) {
preScaleValue = 4;
T2CONbits.T2CKPS = 0b01;
} else if (frequency > 1221) {
preScaleValue = 16;
T2CONbits.T2CKPS = 0b10;
} else {
preScaleValue = 64;
T2CONbits.T2CKPS = 0b11;
}
uint32_t tmp = frequency * 4 * preScaleValue;
computedFrequency = (_XTAL_FREQ / tmp) - 1;
// Updated duty cycle
Set_PWM_Duty_Cycle(savedDutyCycleHigh, savedDutyCycleLow);
}
void Set_PWM_Duty_Cycle(uint8_t highPercent, uint8_t lowPercent) {
// Duty cycle specified by 10 bit value in CCPR1L:DC1B<1:0>
savedDutyCycleHigh = highPercent;
savedDutyCycleLow = lowPercent;
// Compute values to store in register
uint32_t highValue = (computedFrequency + 1) * 4;
highValue *= highPercent;
highValue /= 100;
computedDutyCycleHigh_LowerBits = highValue & 0x3;
computedDutyCycleHigh_UpperByte = (highValue >> 2) & 0xFF;
uint32_t lowValue = (computedFrequency + 1) * 4;
lowValue *= lowPercent;
lowValue /= 100;
computedDutyCycleLow_LowerBits = lowValue & 0x3;
computedDutyCycleLow_UpperByte = (lowValue >> 2) & 0xFF;
}
void Set_PWM_Pattern(uint16_t pattern) {
savedPattern = pattern;
}
void PWM_Transmit_Pattern() {
// Set PWM frequency pre-computed values
PR2 = computedFrequency;
// Set duty cycle to 0%
CCP1CONbits.DC1B = 0b00;
CCPR1L = 0x00;
// Start timer and wait for it to rollover to latch duty cycle value
T2CONbits.TMR2ON = 1;
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
CCP1_TRIS = 0;
// Bit 15
if (savedPattern & 0x8000) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
/* The above section of code disassembles to the following assembly code
* According to the instruction set table, this should take 22 cycles to execute
* 22 cycles corresponds to a maximum of ~227.272 kHz PWM frequency
* If higher PWM frequency is needed, DC1B can be omitted for lower duty cycle accuracy
! if (pattern & 0x8000) {
0x26: BTFSS 0x72, 0x7
0x27: GOTO 0x34
! CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
0x28: MOVLB 0x0
0x29: MOVF computedDutyCycleHigh_LowerBits, W
0x2A: MOVWF 0x73
0x2B: SWAPF 0x73, F
0x2C: MOVLB 0x5
0x2D: MOVF CCP1CON, W
0x2E: XORWF 0x2F3, W
0x2F: ANDLW 0xCF
0x30: XORWF 0x2F3, W
0x31: MOVWF CCP1CON
! CCPR1L = computedDutyCycleHigh_UpperByte;
0x32: MOVF computedDutyCycleHigh_UpperByte, W
0x33: GOTO 0x41
! } else {
! CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
0x34: MOVLB 0x0
0x35: MOVF computedDutyCycleLow_LowerBits, W
0x36: MOVWF 0x73
0x37: SWAPF 0x73, F
0x38: MOVLB 0x5
0x39: MOVF CCP1CON, W
0x3A: XORWF 0x2F3, W
0x3B: ANDLW 0xCF
0x3C: XORWF 0x2F3, W
0x3D: MOVWF CCP1CON
! CCPR1L = computedDutyCycleLow_UpperByte;
0x3E: MOVLB 0x0
0x3F: MOVF computedDutyCycleLow_UpperByte, W
0x40: MOVLB 0x5
0x41: MOVWF CCPR1
! }
! while (!PIR1bits.TMR2IF);
0x42: MOVLB 0x0
0x43: BTFSS PIR1, 0x1
0x44: GOTO 0x42
! PIR1bits.TMR2IF = 0;
0x45: BCF PIR1, 0x1
* If DC1B is ignored, the disassembly is as follows:
* According to the instruction set table, this should take 14 cycles to execute
* 14 cycles corresponds to a maximum of ~357.142 kHz PWM frequency
! // Bit 15
! if (pattern & 0x8000) {
0x26: BTFSS 0x72, 0x7
0x27: GOTO 0x2A
! CCPR1L = computedDutyCycleHigh_UpperByte;
0x28: MOVF computedDutyCycleHigh_UpperByte, W
0x29: GOTO 0x2C
! } else {
! CCPR1L = computedDutyCycleLow_UpperByte;
0x2A: MOVLB 0x0
0x2B: MOVF computedDutyCycleLow_UpperByte, W
0x2C: MOVLB 0x5
0x2D: MOVWF CCPR1
! }
! while (!PIR1bits.TMR2IF);
0x2E: MOVLB 0x0
0x2F: BTFSS PIR1, 0x1
0x30: GOTO 0x2E
! PIR1bits.TMR2IF = 0;
0x31: BCF PIR1, 0x1
*/
// Bit 14
if (savedPattern & 0x4000) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 13
if (savedPattern & 0x2000) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 12
if (savedPattern & 0x1000) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 11
if (savedPattern & 0x0800) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 10
if (savedPattern & 0x0400) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 9
if (savedPattern & 0x0200) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 8
if (savedPattern & 0x0100) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 7
if (savedPattern & 0x0080) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 6
if (savedPattern & 0x0040) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 5
if (savedPattern & 0x0020) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 4
if (savedPattern & 0x0010) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 3
if (savedPattern & 0x0008) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 2
if (savedPattern & 0x0004) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 1
if (savedPattern & 0x0002) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Bit 0
if (savedPattern & 0x0001) {
CCP1CONbits.DC1B = computedDutyCycleHigh_LowerBits;
CCPR1L = computedDutyCycleHigh_UpperByte;
} else {
CCP1CONbits.DC1B = computedDutyCycleLow_LowerBits;
CCPR1L = computedDutyCycleLow_UpperByte;
}
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
// Set next duty cycle to 0% (idle line low)
CCP1CONbits.DC1B = 0b00;
CCPR1L = 0x00;
// Wait for timer to rollover, then turn off timer
while (!PIR1bits.TMR2IF);
PIR1bits.TMR2IF = 0;
T2CONbits.TMR2ON = 0;
TMR2 = 0x0;
}