Rev 278 | Blame | Compare with Previous | Last modification | View Log | RSS feed
// <editor-fold defaultstate="collapsed" desc="Configuration Bits">
/* ------------------------------------------------------------ */
/* PIC32 Configuration Settings */
/* ------------------------------------------------------------ */
/* Oscillator Settings */
#pragma config FNOSC = PRIPLL // Oscillator Selection Bits
#pragma config POSCMOD = EC // Primary Oscillator Configuration
#pragma config FPLLIDIV = DIV_2 // PLL Input Divider
#pragma config FPLLMUL = MUL_20 // PLL Multiplier
#pragma config FPLLODIV = DIV_1 // PLL Output Divider
#pragma config FPBDIV = DIV_1 // Peripheral Clock Divisor (timers/UART/SPI/I2C)
#pragma config FSOSCEN = OFF // Secondary Oscillator Enable
/* Clock Control Settings */
#pragma config IESO = OFF // Internal/External Clock Switch Over
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection
#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the OSCO Pin
/* USB Settings */
#pragma config UPLLEN = ON // USB PLL Enable
#pragma config UPLLIDIV = DIV_2 // USB PLL Input Divider
#pragma config FVBUSONIO = OFF // USB VBUS ON Selection
#pragma config FUSBIDIO = OFF // USB USID Selection
/* Other Peripheral Device Settings */
#pragma config FWDTEN = OFF // Watchdog Timer Enable
#pragma config WDTPS = PS1048576 // Watchdog Timer Postscaler (1048.576s)
#pragma config FSRSSEL = PRIORITY_7 // SRS Interrupt Priority
#pragma config FCANIO = OFF // CAN I/O Pin Select (default/alternate)
#pragma config FETHIO = ON // Ethernet I/O Pin Select (default/alternate)
#pragma config FMIIEN = OFF // Ethernet MII/RMII select (OFF=RMII)
/* Code Protection Settings */
#pragma config CP = OFF // Code Protect
#pragma config BWP = OFF // Boot Flash Write Protect
#pragma config PWP = OFF // Program Flash Write Protect
/* Debug Settings */
#pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel Select (on-board debugger)
/* ------------------------------------------------------------ */
// </editor-fold>
#include "defines.h"
#include "UART1.h"
#include "SPI1.h"
#include "SPI4.h"
#include "I2C1.h"
#include "ETHERNET.h"
#include "TIMER4.h"
#include "TIMER5.h"
#include "CUBE.h"
#include "BTN.h"
#include "ANIMATIONS.h"
#include "CONTROLLERS.h"
#include "SNAKE.h"
#include "TRON.h"
void BTN1_Interrupt(void);
void BTN2_Interrupt(void);
void BTN3_Interrupt(void);
void Delay_MS(uint32_t delay_ms) {
// Delays the CPU for the given amount of time.
// Note: Watch out for integer overflow! (max delay_ms = 107374) ??
uint32_t delay = delay_ms * MS_TO_CT_TICKS;
uint32_t startTime = ReadCoreTimer();
while ((uint32_t)(ReadCoreTimer() - startTime) < delay) {};
}
void Delay_US(uint32_t delay_us) {
// Delays the CPU for the given amount of time.
// Note: Watch out for integer overflow!
uint32_t delay = delay_us * US_TO_CT_TICKS;
uint32_t startTime = ReadCoreTimer();
while ((uint32_t)(ReadCoreTimer() - startTime) < delay) {};
}
uint8_t Get_Reset_Condition(void) {
uint8_t ret = 0;
if (RCONbits.POR && RCONbits.BOR)
ret = RESET_POR;
else if (RCONbits.BOR)
ret = RESET_BOR;
else if (RCONbits.EXTR)
ret = RESET_PIN;
else if (RCONbits.SWR)
ret = RESET_SWR;
else if (RCONbits.CMR)
ret = RESET_CFG;
else if (RCONbits.WDTO)
ret = RESET_WDT;
// Clear the RCON register
RCON = 0x0;
return ret;
}
// Initialize a persistent operational state machine
volatile static uint8_t op_state __attribute__((persistent));
uint8_t Get_Board_State(void) {
return op_state;
}
void Reset_Board(uint8_t next_state) {
op_state = next_state;
// Executes a software reset
INTDisableInterrupts();
SYSKEY = 0x00000000; // Write invalid key to force lock
SYSKEY = 0xAA996655; // Write key1 to SYSKEY
SYSKEY = 0x556699AA; // Write key2 to SYSKEY
/* OSCCON is now unlocked */
// Set SWRST bit to arm reset
RSWRSTSET = 1;
// Read RSWRST register to trigger reset
uint32_t dummy;
dummy = RSWRST;
// Prevent any unwanted code execution until reset occurs
while(1);
}
void Test_Callback(uint8_t controller, CTRL_BTN_STATUS value) {
LED1_LAT = 0;
LED2_LAT = 0;
LED3_LAT = 0;
LED4_LAT = 0;
if (value.BTN_R_N)
LED1_LAT = 1;
if (value.BTN_R_E)
LED2_LAT = 1;
if (value.BTN_R_S)
LED3_LAT = 1;
if (value.BTN_R_W)
LED4_LAT = 1;
}
void main() {
// WARNING!! THIS BOARD WILL RESET EVERY 1048.576s DUE TO THE WDT!!
/* -------------------- BEGIN INITIALIZATION --------------------- */
// Configure the target for maximum performance at 80 MHz.
// Note: This overrides the peripheral clock to 80Mhz regardless of config
SYSTEMConfigPerformance(CPU_CLOCK_HZ);
// Configure the interrupts for multiple vectors
INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);
// Set all analog I/O pins to digital
AD1PCFGSET = 0xFFFF;
// Enable the watchdog timer with windowed mode disabled
// WDT prescaler set to 1048576 (1048.576s) (see config bits)
// WDTCON = 0x00008000;
WDTCON = 0x00000000;
// Configure onboard LEDs
LED1_TRIS = 0;
LED2_TRIS = 0;
LED3_TRIS = 0;
LED4_TRIS = 0;
LED1_LAT = 0;
LED2_LAT = 0;
LED3_LAT = 0;
LED4_LAT = 0;
// Determine what to do at this point. We either choose to idle (on POR)
// or go into a mode specified prior to the software reset event
uint8_t last_reset = Get_Reset_Condition();
if (last_reset == RESET_POR || last_reset == RESET_BOR ||
last_reset == RESET_PIN || last_reset == RESET_WDT ||
last_reset == RESET_CFG) {
op_state = BOARD_MODE_IDLE;
}
// Initialize the SPI1 module
SPI1_DATA spi_1_data;
SPI1_Init(&spi_1_data, NULL);
// Initialize the SPI4 module
// SPI4_DATA spi_4_data;
// SPI4_Init(&spi_4_data);
// Initialize the I2C1 module
I2C1_DATA i2c_1_data;
I2C1_Init(&i2c_1_data, I2C1_400KHZ, 0x20);
// // Initialize the UART1 module
// UART1_DATA uart_data;
// UART1_Init(&uart_data, &Cube_Data_In);
// Initializs the PWM2 output to 20MHz
PWM2_Init();
// Initialize the cube variables
CUBE_DATA cube_data;
Cube_Init(&cube_data, 0x40);
// Start the cube update layer interrupt
// 2084 = 60Hz, 500 = 250Hz, 250 = 500Hz
TIMER5_DATA timer_5_data;
TIMER5_Init(&timer_5_data, &Cube_Timer_Interrupt, 500);
// Initialize timer for controller polling and overlay rotation interrupt
TIMER4_DATA timer_4_data;
TIMER4_Init(&timer_4_data, NULL, NULL, 0);
// Process button inputs
BTN_DATA btn_data;
BTN_Init(&btn_data, &BTN1_Interrupt, &BTN2_Interrupt, NULL);
// Initialize controllers
CONTROLLER_DATA ctrl_data;
Controller_Init(&ctrl_data, NULL);
// Initialize the Ethernet module
if (op_state == BOARD_MODE_ETHERNET) {
LED1_LAT = 1;
ETH_DATA eth_data;
ETH_Init(ð_data, NULL, &Cube_Ethernet_Frame_In);
}
SNAKE_DATA snake_data;
TRON_DATA tron_data;
PWM2_Start();
/* -------------------- END OF INITIALIZATION -------------------- */
/* ------------------------ BEGIN DISPLAY ------------------------ */
// Figure out what to do at this point (depending on current state)
switch (op_state) {
case BOARD_MODE_IDLE:
TIMER5_Start(); // Use the default refresh rate (250Hz)
Idle_Animation_Sequence();
break;
case BOARD_MODE_SNAKE:
// Change refresh rate to ~60Hz
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 2000);
TIMER5_Start();
// Poll the controllers at 1kHz
Controller_Init(NULL, &Snake_Update_Direction);
TIMER4_Init(NULL, &Controller_Update, NULL, 0);
// Initialize and start the game
Snake_Init(&snake_data);
Snake_Main();
break;
case BOARD_MODE_TRON:
// Change refresh rate to ~60Hz
TIMER5_Init(NULL, &Cube_Timer_Interrupt, 2000);
TIMER5_Start();
// Poll the controllers at 1kHz
Controller_Init(NULL, &Tron_Update_Direction);
TIMER4_Init(NULL, &Controller_Update, NULL, 0);
// Initialize and start the game
Tron_Init(&tron_data);
Tron_Main();
break;
case BOARD_MODE_ETHERNET:
TIMER4_Stop();
TIMER5_Start();
LED2_LAT = 1;
while(1);
break;
}
}
void Idle_Animation_Sequence(void) {
// Cube_Set_All(RED);
// Delay_MS(2000);
// Cube_Set_All(GREEN);
// Delay_MS(2000);
// Cube_Set_All(BLUE);
// Delay_MS(2000);
// Animation_Pseudo_Random_Colors(200);
// Animation_Pseudo_Random_Colors(200);
// Animation_Pseudo_Random_Colors(200);
// Animation_Pseudo_Random_Colors(200);
// Animation_Pseudo_Random_Colors(200);
// Animation_Pseudo_Random_Colors(200);
uint8_t connected, i;
connected = Controller_Get_Connected();
for (i = 0; i < connected; i++) {
Controller_Set_Idle(i);
}
// Start the scrolling text
TIMER4_Stop();
TIMER4_Init(NULL, NULL, &Cube_Text_Interrupt, 100);
// TIMER4_Start();
// int8_t start_text[] = "Cube Initialized\r\n";
// UART1_Write(start_text, 18);
// Set the overlay text
uint8_t text_string[] = "Welcome to the CCM Lab ";
Cube_Text_Init(text_string, 27, 0xFF, 0xFF, 0xFF);
// TIMER4_Start();
// Loop through some preset animations
while(1) {
Animation_Sawtooth(100);
Animation_Sawtooth(100);
Animation_Sawtooth(100);
Animation_Sphere(100);
Animation_Sphere(100);
Animation_Sphere(100);
Animation_Sphere(100);
Animation_Wave1(100);
Animation_Wave1(100);
Animation_Wave1(100);
Animation_Wave1(100);
Animation_Wave2(100);
Animation_Wave2(100);
Animation_Wave2(100);
Animation_Wave2(100);
// Animation_Solid_Colors(300);
// Animation_Layer_Alternate(300);
// Animation_Pixel_Alternate(200);
// Animation_Full_Color_Sweep(1000);
// Animation_Row_Column_Sweep(40);
Animation_Row_Column_Sweep(40);
Animation_Cube_In_Cube(300);
Animation_Cube_In_Cube(300);
Animation_Cube_In_Cube(300);
Animation_Double_Rotation(30);
Animation_Double_Rotation(30);
Animation_Double_Rotation(30);
Animation_Double_Rotation(30);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
Animation_Pseudo_Random_Colors(300);
// Animation_Random_Colors(300);
// ClearWDT(); // Clear the WDT if we dont want the board to reset
}
}
// Function call on button 1 press to change cube operation
void BTN1_Interrupt(void) {
switch (op_state) {
case BOARD_MODE_IDLE:
Reset_Board(BOARD_MODE_SNAKE);
break;
case BOARD_MODE_SNAKE:
Reset_Board(BOARD_MODE_TRON);
break;
case BOARD_MODE_TRON:
Reset_Board(BOARD_MODE_ETHERNET);
break;
case BOARD_MODE_ETHERNET:
Reset_Board(BOARD_MODE_IDLE);
break;
}
// Code to change refresh rate on button press
// static uint8_t state;
// state = (state == 4) ? 0 : state + 1;
// TIMER5_Stop();
// switch (state) {
// case 0:
// TIMER5_Init(NULL, &Cube_Timer_Interrupt, 500); // 250Hz
// break;
// case 1:
// TIMER5_Init(NULL, &Cube_Timer_Interrupt, 2083); // 60Hz
// break;
// case 2:
// TIMER5_Init(NULL, &Cube_Timer_Interrupt, 4166); // 30Hz
// break;
// case 3:
// TIMER5_Init(NULL, &Cube_Timer_Interrupt, 12498); // 10Hz
// break;
// case 4:
// TIMER5_Init(NULL, &Cube_Timer_Interrupt, 24996); // 5Hz
// break;
// }
// TIMER5_Start();
}
// Function call on button 2 press to change brightness
void BTN2_Interrupt(void) {
static uint8_t state = 6;
state = (state == 6) ? 0 : state + 1;
TIMER5_Stop();
Delay_MS(1); // Need to wait for all SPI writes to complete
uint8_t BC;
switch (state) {
case 0:
BC = 0x01;
break;
case 1:
BC = 0x08;
break;
case 2:
BC = 0x10;
break;
case 3:
BC = 0x20;
break;
case 4:
BC = 0x40;
break;
case 5:
BC = 0x80;
break;
case 6:
BC = 0xFF;
break;
}
Cube_Write_DCS(BC);
TIMER5_Start();
}
//// Function call on button 3 press to change text scroll speed
//void BTN3_Interrupt(void) {
// static uint8_t state;
// state = (state == 4) ? 0 : state + 1;
// TIMER4_Stop();
// switch (state) {
// case 0:
// TIMER4_Init(NULL, &Cube_Text_Interrupt, 209712);
// break;
// case 1:
// TIMER4_Init(NULL, &Cube_Text_Interrupt, 180000);
// break;
// case 2:
// TIMER4_Init(NULL, &Cube_Text_Interrupt, 150000);
// break;
// case 3:
// TIMER4_Init(NULL, &Cube_Text_Interrupt, 120000);
// break;
// case 4:
// TIMER4_Init(NULL, &Cube_Text_Interrupt, 90000);
// break;
// }
// TIMER4_Start();
//}