Rev 251 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
// ***********************************************************
// File: mmc.c
// Description: Library to access a MultiMediaCard
// functions: init, read, write ...
// C. Speck / S. Schauer
// Texas Instruments, Inc
// June 2005
//
// Version 1.1
// corrected comments about connection the MMC to the MSP430
// increased timeout in mmcGetXXResponse
//
// ***********************************************************
// MMC Lib
// ***********************************************************
/* ***********************************************************
* THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR
* REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,
* INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR
* COMPLETENESS OF RESPONSES, RESULTS AND LACK OF NEGLIGENCE.
* TI DISCLAIMS ANY WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET
* POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
* INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE PROGRAM OR
* YOUR USE OF THE PROGRAM.
*
* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
* CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
* THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT
* OF THIS AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM.
* EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF
* REMOVAL OR REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS
* OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, OR LOSS OF
* USE OR INTERRUPTION OF BUSINESS. IN NO EVENT WILL TI'S
* AGGREGATE LIABILITY UNDER THIS AGREEMENT OR ARISING OUT OF
* YOUR USE OF THE PROGRAM EXCEED FIVE HUNDRED DOLLARS
* (U.S.$500).
*
* Unless otherwise stated, the Program written and copyrighted
* by Texas Instruments is distributed as "freeware". You may,
* only under TI's copyright in the Program, use and modify the
* Program without any charge or restriction. You may
* distribute to third parties, provided that you transfer a
* copy of this license to the third party and the third party
* agrees to these terms by its first use of the Program. You
* must reproduce the copyright notice and any other legend of
* ownership on each copy or partial copy, of the Program.
*
* You acknowledge and agree that the Program contains
* copyrighted material, trade secrets and other TI proprietary
* information and is protected by copyright laws,
* international copyright treaties, and trade secret laws, as
* well as other intellectual property laws. To protect TI's
* rights in the Program, you agree not to decompile, reverse
* engineer, disassemble or otherwise translate any object code
* versions of the Program to a human-readable form. You agree
* that in no event will you alter, remove or destroy any
* copyright notice included in the Program. TI reserves all
* rights not specifically granted under this license. Except
* as specifically provided herein, nothing in this agreement
* shall be construed as conferring by implication, estoppel,
* or otherwise, upon you, any license or other right under any
* TI patents, copyrights or trade secrets.
*
* You may not use the Program in non-TI devices.
* ********************************************************* */
#ifndef _MMCLIB_C
#define _MMCLIB_C
//
//---------------------------------------------------------------
#include "mmc.h"
#include "hal_SPI.h"
#include "hal_hardware_board.h"
//#define withDMA
// Function Prototypes
char mmcGetResponse(void);
char mmcGetXXResponse(const char resp);
char mmcCheckBusy(void);
char mmcGoIdle();
// Initialize MMC card
char mmcInit(void)
{
//raise CS and MOSI for 80 clock cycles
//SendByte(0xff) 10 times with CS high
//RAISE CS
int i;
// Port x Function Dir On/Off
// mmcCS Out 0 - Active 1 - none Active
// Dout Out 0 - off 1 - On -> init in SPI_Init
// Din Inp 0 - off 1 - On -> init in SPI_Init
// Clk Out - -> init in SPI_Init
// mmcCD In 0 - card inserted
// // Init Port for MMC (default high)
// MMC_PxOUT |= MMC_SIMO + MMC_SOMI + MMC_UCLK;
// MMC_PxDIR |= MMC_SIMO + MMC_UCLK;
// MMC_PxDIR &= ~MMC_SOMI;
//
// // Chip Select
// MMC_CS_PxOUT |= MMC_CS;
// MMC_CS_PxDIR |= MMC_CS;
//
// // Card Detect
// MMC_CD_PxDIR &= ~MMC_CD;
// Enable secondary function
#if SPI_SER_INTF == SER_INTF_BITBANG
MMC_PxSEL |= MMC_SIMO + MMC_SOMI + MMC_UCLK;
#endif
// Ping the card to check if it exists
// Set the clock speed to something slow
halSPISetSpeedLow();
// Initialization sequence on powerup
MMC_CS_HIGH();
for(i=0;i<=9;i++)
spiSendByte(DUMMY_CHAR);
__delay_cycles(100);
return (mmcGoIdle());
}
// Set MMC in Idle mode
char mmcGoIdle()
{
char response=0x01;
MMC_CS_LOW();
// Send Command 0 to put MMC in SPI mode
mmcSendCmd(MMC_GO_IDLE_STATE,0,0x95);
// Now wait until idle state bit is cleared
if(mmcGetResponse()!=0x01)
return MMC_INIT_ERROR;
while(response==0x01)
{
MMC_CS_HIGH();
spiSendByte(DUMMY_CHAR);
MMC_CS_LOW();
mmcSendCmd(MMC_SEND_OP_COND,0x00,0xff);
response=mmcGetResponse();
}
MMC_CS_HIGH();
// Card is now initialized, increase the clock speed
halSPISetSpeedHigh();
spiSendByte(DUMMY_CHAR);
spiSendByte(DUMMY_CHAR);
return (MMC_SUCCESS);
}
// MMC Get Response
char mmcGetResponse(void)
{
//Response comes 1-8bytes after command
//the first bit will be a 0
//followed by an error code
//data will be 0xff until response
int i=0;
volatile unsigned char response;
while(i<=64)
{
response=spiSendByte(DUMMY_CHAR);
if(response==0x00)break;
if(response==0x01)break;
i++;
}
return response;
}
char mmcGetXXResponse(const char resp)
{
//Response comes 1-8bytes after command
//the first bit will be a 0
//followed by an error code
//data will be 0xff until response
int i=0;
char response;
while(i<=1000)
{
response=spiSendByte(DUMMY_CHAR);
if(response==resp)break;
i++;
}
return response;
}
// Check if MMC card is still busy
char mmcCheckBusy(void)
{
//Response comes 1-8bytes after command
//the first bit will be a 0
//followed by an error code
//data will be 0xff until response
int i=0;
char response;
char rvalue;
while(i<=64)
{
response=spiSendByte(DUMMY_CHAR);
response &= 0x1f;
switch(response)
{
case 0x05: rvalue=MMC_SUCCESS;break;
case 0x0b: return(MMC_CRC_ERROR);
case 0x0d: return(MMC_WRITE_ERROR);
default:
rvalue = MMC_OTHER_ERROR;
break;
}
if(rvalue==MMC_SUCCESS)break;
i++;
}
i=0;
do
{
response=spiSendByte(DUMMY_CHAR);
i++;
}while(response==0);
return response;
}
// The card will respond with a standard response token followed by a data
// block suffixed with a 16 bit CRC.
// read a size Byte big block beginning at the address.
char mmcReadBlock(const unsigned long address, const unsigned long count, unsigned char *pBuffer)
{
char rvalue = MMC_RESPONSE_ERROR;
// Set the block length to read
if (mmcSetBlockLength (count) == MMC_SUCCESS) // block length could be set
{
// CS = LOW (on)
MMC_CS_LOW ();
// send read command MMC_READ_SINGLE_BLOCK=CMD17
mmcSendCmd (MMC_READ_SINGLE_BLOCK,address, 0xFF);
// Send 8 Clock pulses of delay, check if the MMC acknowledged the read block command
// it will do this by sending an affirmative response
// in the R1 format (0x00 is no errors)
if (mmcGetResponse() == 0x00)
{
// now look for the data token to signify the start of
// the data
if (mmcGetXXResponse(MMC_START_DATA_BLOCK_TOKEN) == MMC_START_DATA_BLOCK_TOKEN)
{
// clock the actual data transfer and receive the bytes; spi_read automatically finds the Data Block
spiReadFrame(pBuffer, count);
// get CRC bytes (not really needed by us, but required by MMC)
spiSendByte(DUMMY_CHAR);
spiSendByte(DUMMY_CHAR);
rvalue = MMC_SUCCESS;
}
else
{
// the data token was never received
rvalue = MMC_DATA_TOKEN_ERROR; // 3
}
}
else
{
// the MMC never acknowledge the read command
rvalue = MMC_RESPONSE_ERROR; // 2
}
}
else
{
rvalue = MMC_BLOCK_SET_ERROR; // 1
}
MMC_CS_HIGH ();
spiSendByte(DUMMY_CHAR);
return rvalue;
}
char mmcWriteBlock (const unsigned long address, const unsigned long count, unsigned char *pBuffer)
{
char rvalue = MMC_RESPONSE_ERROR; // MMC_SUCCESS;
// char c = 0x00;
// Set the block length to read
if (mmcSetBlockLength (count) == MMC_SUCCESS) // block length could be set
{
// CS = LOW (on)
MMC_CS_LOW ();
// send write command
mmcSendCmd (MMC_WRITE_BLOCK,address, 0xFF);
// check if the MMC acknowledged the write block command
// it will do this by sending an affirmative response
// in the R1 format (0x00 is no errors)
if (mmcGetXXResponse(MMC_R1_RESPONSE) == MMC_R1_RESPONSE)
{
spiSendByte(DUMMY_CHAR);
// send the data token to signify the start of the data
spiSendByte(0xfe);
// clock the actual data transfer and transmitt the bytes
spiSendFrame(pBuffer, count);
// put CRC bytes (not really needed by us, but required by MMC)
spiSendByte(DUMMY_CHAR);
spiSendByte(DUMMY_CHAR);
// read the data response xxx0<status>1 : status 010: Data accected, status 101: Data
// rejected due to a crc error, status 110: Data rejected due to a Write error.
mmcCheckBusy();
rvalue = MMC_SUCCESS;
}
else
{
// the MMC never acknowledge the write command
rvalue = MMC_RESPONSE_ERROR; // 2
}
}
else
{
rvalue = MMC_BLOCK_SET_ERROR; // 1
}
// give the MMC the required clocks to finish up what ever it needs to do
// for (i = 0; i < 9; ++i)
// spiSendByte(0xff);
MMC_CS_HIGH ();
// Send 8 Clock pulses of delay.
spiSendByte(DUMMY_CHAR);
return rvalue;
}
// Send command to MMC
void mmcSendCmd (const char cmd, unsigned long data, const char crc)
{
unsigned char frame[6];
char temp;
int i;
frame[0]=(cmd|0x40);
for(i=3;i>=0;i--){
temp=(char)(data>>(8*i));
frame[4-i]=(temp);
}
frame[5]=(crc);
spiSendFrame(frame,6);
}
//--------------- set blocklength 2^n ------------------------------------------------------
char mmcSetBlockLength (const unsigned long blocklength)
{
// CS = LOW (on)
MMC_CS_LOW ();
// Set the block length to read
mmcSendCmd(MMC_SET_BLOCKLEN, blocklength, 0xFF);
// get response from MMC - make sure that its 0x00 (R1 ok response format)
if(mmcGetResponse()!=0x00)
{ mmcInit();
mmcSendCmd(MMC_SET_BLOCKLEN, blocklength, 0xFF);
mmcGetResponse();
}
MMC_CS_HIGH ();
// Send 8 Clock pulses of delay.
spiSendByte(DUMMY_CHAR);
return MMC_SUCCESS;
}
// Reading the contents of the CSD and CID registers in SPI mode is a simple read-block transaction.
char mmcReadRegister (const char cmd_register, const unsigned char length, unsigned char *pBuffer)
{
char uc = 0;
char rvalue = MMC_TIMEOUT_ERROR;
if (mmcSetBlockLength (length) == MMC_SUCCESS)
{
MMC_CS_LOW ();
// CRC not used: 0xff as last byte
mmcSendCmd(cmd_register, 0x000000, 0xff);
// wait for response
// in the R1 format (0x00 is no errors)
if (mmcGetResponse() == 0x00)
{
if (mmcGetXXResponse(0xfe)== 0xfe)
for (uc = 0; uc < length; uc++)
pBuffer[uc] = spiSendByte(DUMMY_CHAR); //mmc_buffer[uc] = spiSendByte(0xff);
// get CRC bytes (not really needed by us, but required by MMC)
spiSendByte(DUMMY_CHAR);
spiSendByte(DUMMY_CHAR);
rvalue = MMC_SUCCESS;
}
else
rvalue = MMC_RESPONSE_ERROR;
// CS = HIGH (off)
MMC_CS_HIGH ();
// Send 8 Clock pulses of delay.
spiSendByte(DUMMY_CHAR);
}
MMC_CS_HIGH ();
return rvalue;
}
#include "math.h"
unsigned long mmcReadCardSize(void)
{
// Read contents of Card Specific Data (CSD)
unsigned long MMC_CardSize;
unsigned short i, // index
j, // index
b, // temporary variable
response, // MMC response to command
mmc_C_SIZE;
unsigned char mmc_READ_BL_LEN, // Read block length
mmc_C_SIZE_MULT;
MMC_CS_LOW ();
spiSendByte(MMC_READ_CSD); // CMD 9
for(i=4; i>0; i--) // Send four dummy bytes
spiSendByte(0);
spiSendByte(DUMMY_CHAR); // Send CRC byte
response = mmcGetResponse();
// data transmission always starts with 0xFE
b = spiSendByte(DUMMY_CHAR);
if( !response )
{
while (b != 0xFE) b = spiSendByte(DUMMY_CHAR);
// bits 127:87
for(j=5; j>0; j--) // Host must keep the clock running for at
b = spiSendByte(DUMMY_CHAR);
// 4 bits of READ_BL_LEN
// bits 84:80
b =spiSendByte(DUMMY_CHAR); // lower 4 bits of CCC and
mmc_READ_BL_LEN = b & 0x0F;
b = spiSendByte(DUMMY_CHAR);
// bits 73:62 C_Size
// xxCC CCCC CCCC CC
mmc_C_SIZE = (b & 0x03) << 10;
b = spiSendByte(DUMMY_CHAR);
mmc_C_SIZE += b << 2;
b = spiSendByte(DUMMY_CHAR);
mmc_C_SIZE += b >> 6;
// bits 55:53
b = spiSendByte(DUMMY_CHAR);
// bits 49:47
mmc_C_SIZE_MULT = (b & 0x03) << 1;
b = spiSendByte(DUMMY_CHAR);
mmc_C_SIZE_MULT += b >> 7;
// bits 41:37
b = spiSendByte(DUMMY_CHAR);
b = spiSendByte(DUMMY_CHAR);
b = spiSendByte(DUMMY_CHAR);
b = spiSendByte(DUMMY_CHAR);
b = spiSendByte(DUMMY_CHAR);
}
for(j=4; j>0; j--) // Host must keep the clock running for at
b = spiSendByte(DUMMY_CHAR); // least Ncr (max = 4 bytes) cycles after
// the card response is received
b = spiSendByte(DUMMY_CHAR);
MMC_CS_LOW ();
MMC_CardSize = (mmc_C_SIZE + 1);
// power function with base 2 is better with a loop
// i = (pow(2,mmc_C_SIZE_MULT+2)+0.5);
for(i = 2,j=mmc_C_SIZE_MULT+2; j>1; j--)
i <<= 1;
MMC_CardSize *= i;
// power function with base 2 is better with a loop
//i = (pow(2,mmc_READ_BL_LEN)+0.5);
for(i = 2,j=mmc_READ_BL_LEN; j>1; j--)
i <<= 1;
MMC_CardSize *= i;
return (MMC_CardSize);
}
char mmcPing(void) {
if (!(MMC_CD_PxIN & MMC_CD))
return (MMC_SUCCESS);
else
return (MMC_INIT_ERROR);
}
#ifdef withDMA
#ifdef __IAR_SYSTEMS_ICC__
#pragma vector = DACDMA_VECTOR
__interrupt void DMA_isr(void)
#endif
#ifdef __TI_COMPILER_VERSION__
__interrupt void DMA_isr(void);
DMA_ISR(DMA_isr)
__interrupt void DMA_isr(void)
#endif
{
DMA0CTL &= ~(DMAIFG);
LPM3_EXIT;
}
#endif
//---------------------------------------------------------------------
#endif /* _MMCLIB_C */