Blame | Last modification | View Log | RSS feed
from operator import mul
from random import randrange, sample
from functools import reduce
def Extended_Euclidian(a, b):
''' Takes values a and b and returns a tuple (r,s,t) in the following format:
r = s * a + t * b where r is the GCD and s and t are the inverses of a and b'''
t_ = 0
t = 1
s_ = 1
s = 0
q = a//b
r = a - q * b
# print("%d\t= %d * %d + %d" % (a, q, b, r))
while r > 0:
temp = t_ - q * t
t_ = t
t = temp
temp = s_ - q * s
s_ = s
s = temp
a = b
b = r
q = a//b
r = a - q * b
# print("%d\t= %d * %d + %d" % (a, q, b, r))
r = b
return (r, s, t)
def Inverse(a, b):
'''Returns the multiplicative inverse of a mod b'''
ret = Extended_Euclidian(a,b)
if (ret[1] < 0):
inv = ret[1] + b
else:
inv = ret[1]
return inv
def prod(nums):
"""Product of nums"""
return reduce(mul, nums, 1)
def horner_mod(coeffs, mod):
"""Polynomial with coeffs of degree len(coeffs) via Horner's rule; uses
modular arithmetic. For example, if coeffs = [1,2,3] and mod = 5, this
returns the function x --> (x, y) where y = 1 + 2x + 3x^2 mod 5."""
return lambda x: (x,
reduce(lambda a, b: a * x + b % mod, reversed(coeffs), 0) % mod)
def shamir_threshold(S, k, n, p):
"""Shamir's simple (k, n) threshold scheme. Returns xy_pairs genrated by
secret polynomial mod p with constant term = S. Information is given to n
different people any k of which constitute enough to reconstruct the secret
data."""
coeffs = [S]
# Independent but not necessarily unique; choose k - 1 coefficients from [1, p)
coeffs.extend(randrange(1, p) for _ in range(k - 1))
# x values are unique
return map(horner_mod(coeffs, p), sample(range(1, p), n))
def interp_const(xy_pairs, k, p):
"""Use Lagrange Interpolation to find the constant term of the degree k
polynomial (mod p) that gave the xy-pairs; we get to use a shortcut since
we are only after the constant term for which x = 0."""
assert len(xy_pairs) >= k, "Not enough points for interpolation"
x = lambda i: xy_pairs[i][0]
y = lambda i: xy_pairs[i][1]
return sum(y(i) * prod(x(j) * Inverse(x(j) - x(i), p) % p for j in range(k) if j != i) for i in range(k)) % p
if __name__ == "__main__":
k, n, p = 5, 9, 81342267667
pairs = [(11,29952055635),(22,26786192733),(33,77756881208),(44,80139093118),(55,24225052606),
(66,74666503567),(77,1078845979),(88,72806030240),(99,1471177497)]
for i in range(9):
lst = []
for j in range(9):
if i != j:
lst.append(pairs[j])
print("Omitting Share", (i), ":", interp_const(lst,k,p))