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Jan 23rd

Diffie-Hellman Key agreement, AES

Jan 25th

Given N = (pq)

M — C =M mod N)

C —C%=M4¥=M mod N

Euclidean GCD Algorithm + Extended Version

Def. Let a,b € Z and let a # 0: we say a|b (a divides b) provided there exists an integer ¢ such that b = ac.
alb & blc = alc

alb & bla, a = +b

alb and alc and p,q € Z — (a|pb + qc)

Let a,b € Z and n € Z,n # 0. We say a is congruent to b mod n (written ¢ = b( mod n) provided a — b is
divisible by n (ie. a —b=d*n,d € Z).

Congruence mod n is an equiv relation:
Va,b,c,n #0,a=a modn,a=b=b=a,a=bb=c=>a=c modn,a=bc=d modn=a+tc=b+d
mod n

Common divisors
Let a,b € Z, d is a common divisor of a,b provided d|a and d|b

Def. Let a,b, € Za,b # 0, then g is a GCD of a and b provided g is a common divisor of a and b and g is
the largest such common divisor.

Facts: g is a GCD of a and b if g|a and g|b, g > 0, and if d is any common divisor of a and b then d|g

The GCD algorithm and its extension

Given a,b € Z,b # 0 there exists unique g, € Z,a = gb+r,0 <r < b.
If d|a and d|b, then d|a — gb so d|r.

If d|b and d|r, then d|¢b + r so d|a.

a=qgb+r,a<r<b, ged(a,b) = ged(b,r)

drycb=qr+r,0<r; <r

dry : bZQQT1+7’2,O <rog<mr

r>T1r > T

Last remainder = GCD

Ex. GCD of 118 and 267



Jan 28th

RSA Encryption Algorithm (Rivest, Shamir, Adelman)

How it works: Bob sets up the system. He chooses a large positive integer N (1024 bits) where N =
p*q and p and ¢ are distinct primes about 512 bits each. He can then computes an integer ¢(n) :=
a €Z|1 <a< N,ged(a, N) =1. He chooses two integers e and d such that e x d = 1 + k¢(N) for some
integer k. He then publishes both N and e (e is te encryption exponent). Bob keeps d, p, ¢, and ¢(N)
private.

Alice wants to send a message to Bob. She digitizes the message and breaks it into blocks, where each block
= positive integer < N. Alice sends a block M by encrypting it: namely she computes C' = M¢( mod N)
and sends it to Bob. (Recall: a =b mod m means ¢ —b is a multiple of m, ie. a = b+ km). Bob receives the
message and decrypts it by computing C¢ = (M¢)¢ = M*? mod N and since ed = 1 mod ¢(N), M = M
mod N.

o(pq) = (p—1)(¢ — 1), if N can be factored, the system can be broken as ¢(IN) can be found. e is normally
chosen for ease of computation (sparse, more Os than 1s).

Euclidean Algorithm for computing GCD(a, b)

Euler-Fermat theorem: let m be a positive integer and let GCD(a,m) = 1 and a®"™ =1 mod m.

Jan 30th

Fast Multiplication/Exponentiation: known as double and add or square and multiply.

9 | 74
4| 148
2~ | -296-

I | 592
= | 703

Binary representation of 19: 10011 = 16 + 2 + 1.
Binary reversed, add values under 1s:

1] 1 0 0 1

37 | 74 | 148 | 296 | 592 | 703
19 * 37 = 37 + 2*%(37+2%2%2*37)

Cross out rows with even values on the left, add up remaining values on the right to get the product.

To multiply x by, say, 19: (go from left to right)
117001 1
Ix | 2x | 4x | 8x | 18x
1x 9x | 19x

To multiply x by, say, 112:
1] 1 1 0 0 0 0
2x | 6x | 14x | 28x | b6x | 112x

X | 3x | Tx

To calculate x°3, 53 = 110101

1] 1 0 1 0 1

T 1,2 176 1’12 1.26 IE52

x| a3 13 53 Mult

Answer

Shift left and add one if the bit is 1. To find 2°%° takes 9 squaring and 2 multiplications.



Feb 1st

Chinese Remainder Theorem

Let mq,...,m, be pairwise relatively prime positive integers and let ¢, ..., q, be integers. Then the system
of congruences x = ¢; mod my,...,q, mod m, has a solution which is unique mod (mq, ..., my,).

Proof: Let M =myq,...,my. For 1 <j <n; let M; = A

m;

Claim: If 1 <4 <mn, then ... (see book)

Feb 4th

Recall n be a positive integer and let a € ZT with ged(a,n) = 1 (standard hypothesis)
Ifexd=1 mod (p—1)(g— 1), then (M¢) = M mod pq (based on Euler-Fermat Theorem)

Def. Given the standard hypothesis, the order of @ mod n written ord,a is the least possible r such that
a” =1 mod n if it exists.

Theorem. Given the standard hypothesis, ord,a does exist.

Proof. Write down powers of @ mod n: a,a?,a>,... mod n

Ex. Powers of 3 mod 23: 3,9, 14, 12, 13, 15, 2, 6, 18, 8, 1, 3, 9, ... repeats! (pigeon hole principle (PHP))
By PHP, after at most n+1 steps, the powers repeat.

Let i < j and let @’ = ¢/ mod n.

Ex. 58 =53 mod 31. 5% has one inverse mod 31 so 578 %58 =578 %« 5% mod 31,1 = 53° mod 31

Because ged(a,n)=1, it follows that a is invertible mod n (recall the affine cipher). If a* satisfies a*a = 1

mod n, then (a*)'a’ = (a*)'a’ mod n. .. 1 =a"a’ = a’~* mod n and j —i > 0. Thus r exists and the
least such positive number is the order.

Last time - looked at ord;a for 1 < a < 6.
a |1[2][3]4]5]6
ordza [ 1[3]6[3]6]2
For all a, ged(a,7) = 1, ordra is a divisor of 6.
n=3_§

a [1]3]5]7
aga | 1 [ 2|22
n=9
a |1]2]4]5]|7]8
aga | 1[6]3]6]3]2

What you notice is that the number of possible values of a’s is related to the order

Def. Let n be a positive integer. Define ¢(n) = # of positive integers such that 1 < a < n and ged(a,n) =
1. ¢(n) is called the Euler-Phi function (EulerPhi[n] in Mathematica).

For p a prime: ¢(p) =p— 1.
q another prime, ¢ # p. ¢(pq) = pq—q—p+1; throwing away (p,2p, ..., (¢—1)p, qp) and (q,2q, ..., (p—1)q, pq)
but leaving one pq. ¢(pqg) = pg — q¢ — p + 1 then factors into ¢(pg) = (p — 1)(¢ — 1).

o(p*) =p* —p* =p*(p—1) = p*(1 - 3); throwing away (p,2p, ..., (> — 1)p,p°p)

Feb 6th

Let ged(a,n) = 1; n > 1 such that a* =1 mod n

Given such n and a, ord,a exists (proof by PHP, any string of n+1 consecutive powers of a mod n must
have a repeated number. If a* = a/ mod n with i < j, then a/~¢ = a*(a’)~! with j —i > 0.



We looked at powers of 3 mod 23: ....

Fermat’s Little Theorem: Let p be a prime and get ged(a, p) = 1, then a?~! =1 mod p.

Feb 8th

Proof: if ged(a,n) = 1 and @ =1 mod n then ord,a divides k.

Suppose a* =1 mod n. Let k = gxord,(a) + r with 0 < r <ord,,(a)

Show r = 0 by def and by assumption, 1 = a* = a2 ()t = (grdn ()4 4 " mod n = a” mod n.
Thus " =1 mod n,0 <r < ord,(a) and so r =0 .". k is a multiple of ord,,(a).

Cor. Since a®™ =1 mod n by Euler-Fermat theorem, it follows that ord,(a)|¢(n).

Def: primitive element: let p be a prime. A primitive element mod p is an integer « such that « has order
p — 1 mod p.

Assumption: every prime has a primitive element.

Given ¢ and «, a primitive element mod p. Solve o = 8 mod p where j is given.

The mapping of Z; to Z, by k — a® mod p is 1-1 and onto.

Nice theorem (5.8): Let p be a prime > 2 and let o € Z5. Then « is a primitive element mod p if and only
if for each prime divisor g of p — 1, ¢ Z1 mod p.

Proof: Let o be a primitive and let ¢ be a divisor of p — 1. « primitive = ord,(a) = p— 1. Since ¢lp—1 and
q is a prime, we have that 1 <¢g<p-—1and 1< p%ql < p—q. By def of ord,(«), ot %1 mod p_[% >1

and p%l <ordp(a)]
Suppose « is not primitive. Let ordy(a) =i <p—1. 1 <i<p—1; pz;.l is an integer > 2.

. .. 1 . . .. 1 .
Let g be a prime divisor of 2==. Then ¢ is a prime divisor of p — 1. So ¥ = ¢d for some integer d. So

pT_l =di. Then o7 = = (a")? = (a°r¥%*)d =1 mod p.

Feb 11th

p = 2q+ 1 where ¢ is a odd prime. p is called a SophieGermain prime. Given o Z +1 mod p. Prove that a
is a primitive element if and only if a¢? = —1 mod p.

Use the Nice theorem (5.8). Let p — 1 = ¢1,...,q,. Then « is a primitive element mod p if and only if
{apq;ll, ey osz:l} contains no occurrences of 1 (mod p). We see that p — 1 = 2¢, so the list of prime divisors
of p—1is {2,q}. Consider a"T mod p. By def, pq;l =2, so we test > mod p. Is o> =1 mod p? No.
For p is a prime and if a®> = 1 mod p, then (o — 1)(a +1) =0 mod p = p|(a — 1)(a + 1) = p|(a — 1)
or p/(ae +1) = a=1or —1 mod p. Therefore by the N.T., « is a primitive if and only if a7 = at Zz1
mod p. But o= = aP~! =1 mod p. Therefore (@a)? =1 mod p = a? = +1 mod p. Therefore « is a
prime if and only if a? = —1 mod p.

n = pq,¢(n) is known, ¢(pg) = (p—1)(¢—1) =pg—p—q+1l=n—-p—q+1 p+qg=n+1-2¢n).
=p*+(dp(n)—n—1)p+n=0

RSA: Given p and ¢ large primes and exponents e and d, to encrypt: M — M€® mod n. To decrypt:
C - C%*=1 mod n.

The idea is that p and ¢ are private, n = pq is public, d is private, e is public. Knowing p and ¢, one
cna compute ¢(n), from ehich one can compute d, where ed = 1 mod ¢(n). Thus C? = (M¢)? = M*? =
MFm+1 = (M¢())k 5« M mod n. By EulerFermat, = 1¥M = M mod n.

Issues: how to choose p, q, e.



The Monte Carlo algorithm - A yes-biased M.C algorithm is a randomized based algorithm for a decision
problem such that a YES answer is correct and a NO answer may be correct.

The Las Vegas algorithm - a random algorithm for a decision problem which may not give an answer. But
if it does, it is correct.

Tools for testing for primility
e The decision problem is called COMP(OSITE)
e Algorithms are yes-biased M.C

A yes-biased M.C has an error problem of € y, in an instance in which the answer is “yes”, the algorithm
gives the (wrong) answer NO with probability < e.

FLT If n is a prime and ged(a,n) =1, then a”~ ! =1 mod n.

Contrapositive: ¢! # mod n = n composite.

Feb 13

a?~! =1 mod p for all a, (a,p) = 1 where p is a prime

p—1
If p—1=gq,...,qr and a satisfies a'w #Z1 mod p for 1 <i <k, then a is a prime.
p=2¢+1,p—1=2q. Want a to satisfy T # 1 and ST Z 1 mod p. 0" = a9? and a"7 = a2?
a#1 mod psoa®#1 mod p.

If @ is primitive, a # 1 mod p. a? = a”> mod p so (a?9)? = aP~! =1 mod p. Therefore a? =1 or —1
mod p.

¢(n) = pg—(p+q)+1, 50 p+q = pg+1-¢(n). ¢ =n/psop+3 = n+tl-¢(n) = p*+n = (n+1-¢(n))p.
FLT: If n is prime and ged(a,n)=1, then ¢! =1 mod n.

Contrapositive: If gcd(a,n)=1 and a®~! #1 mod n, then n is a composite.

Compositeness Test: yes-biased Monte-Carlo. Is n a composite?

Randomly pick a such that ged(a,n)=1. Compute a"~* —1 mod n. If a1 —1 2 0 mod n return yes, else
return no.

Pseudo-primes (impostor:) a = 2,n = 341 = 11 x 31. However, 21 = 1 mod 11 by FLT for 11(*). Also,
25 =32=1 mod 31. Therefore 21° =1 mod 31. (**)

The system (*) and (**) of congruences has a unique solution mod 341. Thus 2! = 1 mod 341 therefore
1= (219)31 = 2310 mod 341 !!

Def. Let n be an integer > 1, and let ged(a,n) = 1. Then we call a a pseudo prime to base b if b is an integer
that satisfies "1 =1 mod n and n is a composite. [n is a pseudo prime to base b]

So 341 is a pseudo prime to base 2. What about b = 3?7 3° = 3! =1 mod 11 (FLT). 3!° = 25 mod 31.
Now 33Y = 1 mod 31 (FLT). Thus (3'19)23 = 133 = 1 mod 11 = 1 mod 31. Then 3%° = 1 mod 341.
Therefore 3339 = 3330 4 310 = 25 mod 341. Therefore 341 is a composite.

However! There are universal pseudo primes that fail all tests of compositeness. There exists numbers n for
which n is composite and yet for every b with ged(b,n) = 1, "' =1 mod n. n is a pseudo prime (x) if
ged(x,n) = 1 and 2”1 =1 mod n.

ie. "1 —1=0 mod n.
Suppose 2" — 1 = f1(x) fao(z)...fr(x) mod n
If n is a prime and n|z"~! — 1, then n|fi(x) or n|fa(z) or ... or n|f.(x).

2340 — 1 = (2170 1 1)(2170 — 1) = (2179)(285 4+ 1)(2%° — 1) =0 mod 341. But 2! =2 mod 341; 2%° + 1 =2
mod 341; 2% — 1 =33 mod 341. Correct factorization next time.

Example: n =561 = 3% 11 % 17. ged(b,n) = 1 = 5°° =1 mod 561.



Feb 15th

More about primality and compositeness

n is a pseudo prime to base b [psp(b)], if "~ = 1 mod n and n is a composite, FLT: if 3b : b7~ ! £ 1
mod n and (b,n) = 1, then n is a composite.

2310 =1 mod 341 and 341 = 11*31

3340 £ 1 mod 341 = 341 composite.

"1 =1 mod n means b~ — 1 is divisible by n.

See: write n — 1 = 2%m, with m odd. Then a"~! —1 = a2™*™ — 1 = (a2 '™ 4+ 1)(a®""
Da™ +1)(a™ —-1)

If n is a prime, and n|a™~!, then n must divide one of the factors over the RHS.

m 1) (a® +

Yes Test for decision problem: n is composite: Factor n — 1 = 2¥m, with k is a positive integer and m odd.
Randomly choose a with ged(a,n)=1. Set b := a™. If b =1 mod n, return ("n is prime’) [No, n is not a
composite]. else for i = 1 to k — 1, do the following:

If b= —1 mod n return ('n is prime’); else b := b? endif. and for ; return ('n is composite’)
Miller-Rabin Test (above)
Thm. M-R is a yes-biased test for compositeness.

Proof 1: Suppose the M-R test returns yes. This is impossible if n is a prime. (work backwards in the
algorithm)

Fact: If n is prime and 22 =1 mod n, then z =1 or x = —1 mod n.
Suppose n is a prime, let a be an integer rel. prime to n. Then a"! = 2™ =1 mod n = (agkilm)2 =1
mod n. But a2 '™ # —1(else — NO). Therefore a> '™ =1 mod n. Thus 1 = (a®* ™) mod n. No stop

s0 a2* ™ =1 mod n Continue in this way to (a™)? =1 mod n. Therefore a™ = +1 mod n which would
have returned No.

Def. If ged(b,n) = 1, n failes the M-R test (ie. test yields prime) and yet n is composite, we call n a string
pseudo prime to base b “spsp(b)”.

Ex. M :=2"—1=24%89 If 2" — 1 is prime, then n is prime.

Feb 18th

11213 * 104369 = 11703... (11212 * 104368 = 11702...) note that the first few digits are identical. p, g
10°°, p* ¢ = 1099 ¢(pg) =pg —p—q+1=n— (p+ g — 1) thus we know that there is a finite number of
solutions. Find a factor of de — 1 that has the same length as N.

The integer factoring problem.
Classes of factoring methods
1. BFTI: brute force and ignorance
2. Birthday match techniques
3. Using FLT and generalizations
4

. Combination of congruences: If p|(z — y)(x +y) then p|z —y or p|z +y. The idea is to find two squares
X2andY? such that X2=Y? mod N but X #Y mod N. (Fermat)

Pollard’s p-1 algorithm 1974:
1. Let a be an integer # +1 and GCD(«o, N) =1

2. Raise a to a very large power B mod N.



If p is a prime divisor of N (GCD(a, p) = 1)and p— 1|B, then o =1 mod p. Therefore a® —1 =0 mod p.
Then GCD(af — 1, N) is a multiple of p.

What has to happen for this to work? N = 488533,a = 2,B = 20!; B = 2% 3 * ... * 19 x 20 so happens that
456 = 23 3 % 19]20! and 457 * 1069 = N.

Feb 20th

Pollard p-1: Let N be a large composite number. If N has a prime factor p such that all prime power factors
of p—1 are < M, where M is suitably chosen then the number o™ — 1 for a # 1, GCD(a, N) = 1 will be
divisible by p.

If GCD(«, N) = 1, then GCD(a, p) = 1 for each prime divisor p of N. If p — 1|M, then
1. a»1 =1 mod p (by FLT)
2. o™ =1 mod p (ordyalp — 1 and p — 1| M)
3. .plaM —1
4. . p|GCD(aM —1,N)

p — 1 algorithm: pick some value of B, an integer that’s “big enough but not too big”. [B! is going to be
over value of M|

Find o mod N ans = « for [i = 0;i < Bji++] ans := ans’ mod N g = GCD[ans-1,N] if g#1 or N, stop.
else keep going

PollardRho: Let N = pq. Iterate a random function f on Zy — Zy.
Ex. f(z) =2®+1 mod N, f'(z) = f(x), f*(z) = fo f(z), f"* ! (2) = fo f*(z)...
To factor N = pq, generate two sequences: xg =1, 1 = f(x9) = z;y1 = f(f(x2)) =5

Feb 22nd

We know that if n is a prime > 2 and = € Z, then 2> =1 mod n = x = £1 mod n.
Note that if a"2" mod n, where ged(a,n) = 1, then 3% = (" )2 = a"~' =1 mod n (by FLT)
Therefore if ged(a,n) = 1 and n is an odd prime, then a7 = +1 mod n.

Consequences: Euler’s criterion: If n is an odd prime and ged(a,n) = 1, then "= =1lor —1 mod n.

Def. If p is an odd prime, and ged(a,p) = 1, if there exists a solution z such that 22 = @ mod p has a

solution, then we say that x is a quadratic residue (QR) mod p and x is a quadratic non-residue (QNR)
otherwise.

The squares mod 13: Squares: 1,4,9,16 = 3,25 = 12,36 = 10, Non squares: 2,5,6,7,8,11

k 1| 2 31415 6 71819 |10 11 | 12
2Pmod13 |24 [ 836 [12][11]9[5]10] 7 1
The powers of 2 mod 13: Honsd: ; 283 265 ; 259 231
sq: 4 3 12 9 10 1
22 24 26 28 210 212

FEuler’s Criteron Reinvented: Let p be an odd prime. Then a is a QR mod p if and only if aT =1
mod p.

Il
—

Proof. If a is a QR mod p, then there exists b such that a = b> mod p. Thus ' = (bz)zn%1 =t
mod p (by FLT)



Suppose a”= = 1 mod p. Let g be a primitive element mod p. That is {g9,6% ..., g" Y} ={1,2,....,p — 1}
1

mod p in some order. Therefore we may write a = g* for some integer k. Then 1 =a"= =g~ = mod p.
Thus p — 1|@7 SO g is an integer. g =1,k =2l, and so a = g% = (¢')? is a QR mod p.

Some notation: Let p be an odd prime and let a € Z. Define the Legendre symbol (£) “a over p” by () = {
0 if pla, 1 if ged(a,p) = 1 and 22 = a mod p has a solution [a is a QR mod p], -1 otherwise }

Euler’s Criteron (Final): If p is an odd prime and ged(a,p) = 1, then " = (2) mod D
P

A question: suppose n is an odd integer and ged(a,n) = 1, and AT = (2) mod n. Does that imply that
n is a prime?
The Solovary-Strassen compositeness test: pick o, 1 < o < n, at random. If ged(a,n) # 1, return composite.

Else z = (£). Set y = a"T mod n. If z =y mod n return prime. else return composite.

Feb 25th

Midterm 1: Bring paper!

Topics: Overview PKC, XGCD, RSA, Monto Carlo and Las Vegas Test, Square and Multiply, Issues with
RSA, CRT, Z} (set of numbers invertible mod n), FLT, Euler-Fermat, ¢(n), orders of elements (ord,(a)),
primeality testing (finding primes), primitive elements, certificates of primitivity, why RSA is hard to break,
pseudoprimes, psuedoprime test (if ! = 1 mod n, return PRIME, else return COMPOSITE), strong
pseudoprimes, Miller-Rabin Test (n — 1 = 2° x ¢, t odd, if n is prime, then n divides one of the factors of

a1 —1=(at —1)(at +1)(a?*+1)...(a> 't + 1)), Factoring, Pollard p — 1, Pollard Rho

Given p a prime > 2, and a € Z, define (%) by ...

Euler’s Criteron: If ged(a,p) = 1, then a =1 or —1 where a is a QR mod p or a QNR mod p respec-
tively.
Showed that if g is a prime elt mod p and a = ¢* mod p, then a is a square mod p if and only if k is

even.

Euler’s Criteron showed that if p is an odd prime and ged(a,p) = 1, then T = (%) mod p

Solovay-Strassen Test (yes-biased for “n is composite”) For random a, calculate a"T and (). If they are
equal, return prime. else return composite.

Ex. Find (Z311) In Mathematica, use JacobiSymbol[7411,9283].

Let n be odd and positive. Thus, n = p{*...ptr, p; all odd. Let a € Z, then define the Jacobi Symbol
(2=

Rules - Let a,b € Z and n an odd and positive. Then:
1. If a=b mod n, then (£) = (%)
2. (3)=1lifn=1or -1 mod8, —1ifn=3o0r —3 mod 8

3. () =)

4. QRL: If m and n are odd positive integers and ged(m,n) = 1, then (©*) = (=) if n = lorm =1 mod 4

Mar 1st

Chapter 6!

Discrete log problem mod p: given a prime p, a primitive element ¢ mod p and an integer 3, we know there
exists | € {1,2,...,p — 1} such that ¢ = B mod p given g and g, find [.



Given b* =y where b,y € RT then z1n(b) = In(y) so z = IIEEZ;
Cant do this with mods!

Mod 13: g = 2. by log y is meant the number [ such that 2! =y mod j3

l 1123|456 |7 [8]9|10]11] 12
2 mod13 [ 24|83 61211 ][9[5][10] 7 |1

Rearrange 2! mod 13 to invert permutation

2 mod 13 ] 1 [2[3[4]5]6] 7 [8]9]10]11]12
l 1214295113810 7 | 6

primitive element is called a generator in modern algebra

For moderately large prime, the permutation of logs is hard to determine.
Alice — Bob

Public Key: P a large prime, g and a primitive element mod P.
Private Information: integer mod P — 1

Alice picks «, Bob picks 8

Alice computes g“ mod P, calls this A

Bob computes g® mod P, calls this B

Alice sends A to Bob, Bob sends B to Alice

Bob computes B®. Alice computes A”

Since B = (¢°)* = ¢7* = (¢9*)? = A® mod P

Thus Alice and Bob have a shared secret number.

March 4th

El Gamul crypto system - Discrete logs in a general setting
G is a finite group under multiplication such as Zj

a € G has order n where n is the smallest positive integer k such that a® = 1 where 1 is the identity el’t of

G.

Given discrete log problem in G: given 8 known to be a power of «, find the power. That is, given « and
B =al, find I

Define < a >= {a* : 0 < k < n—1} where n = order of a. Given 8 €< a >, find the unique ! € {0,1,...,n—1}
such that 3 = o.

The El Gamal cryptosystem.
Alice — [Eve] — Bob
Alice sends message to Bob

Public Info: takes place in Zy, the non-zero integer mod p (large prime). The public information is then
prime p and a primitive element a mod p (a € Zy, and < a >= {a/:0<j<p—1}= Zy)

Bob chooses some random integer a € {1,...,p — 1} and computes § = a® mod p. Bob keeps a secret and
publishes 5.

Thus the public information (key) is p, v, 8. Bob’s private info is a. Alice’s private info is a randomly chosen
integer k € {1,...,p — 1}.

k

To send a message X, Alice computes y; = o mod p and yo = X x 8% mod p.

Alice sends the pair (y1,y2) to Bob.



To read the message, Bob knows that y» = X x 8% and f = a®. Thus y» = X x ¥ = X x (a®)F =
X x (aF) = X x y¢.

Because Bob knows a, X = y2 x (y¢)~! mod p for yo x (y¢)7t = X x ¢ x (y¢)~! = X mod p. Thus Bob
knows X.

If Eve can compute discrete log mod p, then Eve can read the message.
Do not reuse « or k but a can be reused.
Attacks on the discrete log problem
Shanks Algorithm (also known as “baby step giant step”) is for solving the discrete log problem.
Given a, 3, where 8 = o, ord(a) =n,and 0 <1 <n—1
All in a group G where « has an order n.
Set m = ceiling "/n" = least integer > y/n. (ceiling(300) = 18)
Stinson uses "v/n" =m
From two lists of ordered pairs:
1. Ly ={(j,a™):0<j<m—1}
2. Ly={(i,Ba"):0<i<m-—1}
0<l=log,f<n—1

Divide [ by m to get | = ggm +qo with 0 < gg < m—1and 0 <l <n—1. m > /n = m? > nso
0<m-1<m?—-1=m?-m+m—-1=mm—-1)+m-—1

March 8th

Pollard-Rho for DLP (given 8 € G, find [ : 8 = o! in G)
Setup: a group G - cyclic of order n (3o € G : G = {a,a?,...,a"} =< a >)
1. Partition G into roughly 3 equal sized subsets s1, so, S3.
2. Define a function of 3 variables
f(z,a,b) = (Bx,a,b+1) if z € 51
f(x,a,b) = (x2,2a,2b) if z € 59
flz,a,b) = (ax,a+ 1,b) if x € s3
Begin at (1,0,0)
Particular example: G = Z;
si={z:x=1 mod 3} sy ={z:2=0 mod 3} sy ={z:2=2 mod 3}
Thus f(1,0,0) = (5,0,1)
Additional rule: Each triple must satisfy = = a®3?
if (,a,b) satisfies x = a®®, then f(z,a,b) = (x1,a1,by) satisfies ; = a1 3%
x €51 = (v1,a1,b1) = (Bg,a,b+ 1) and z = a?p® = 2, = B = a2B°F!
if 2 = a?B® and x € sq, then z; = 22 = 2% and f(x,a,b) = (22, 2a,2b) and same with s3
Compute (x1, a1, b1)(x2,a2,b2), ..., (Tk, ar, br) and (z2, az,b2)(x4, a4,b4), ..., (2K, a2k, bak)
Check to see if 2 = o, then a2+ b2k = @ 3ok,

Let 8 = o' (I is the unknown DL of 3) and so a®*al’2x = a% !, Therefore a2+ = qartlbe =
a2k —ar+(b2k—br) — 1
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If o" =1, then ord,|r. Therefore asr — ax + l(bar, — bx) =0 mod n, where n = ord «
If GCD(bog, — bg,n) = 1, then | = (bgk — bk)_l(ak —agx) mod n
The Birthday paradox

Let P, = Prob(no two out of k share a birthday)

__ 364 __ 364363
Py = 365 Py = 365 3657 "

k=1
Pr(at least on birthday match) =1 — J] (1
i1

~ 365)

Plotted, point of inflection is at 23

March 18th

The discrete log problem (DLP): Given a group G (multiplicative for now) and o € G;8 € G satisfies
B e<a>={arlkcZ}

Since €< a >, there exists [ such that 8 = of. DLP: find [ : log 8

Specialize to Z;, which has a primitive element o whos order = p - 1 and so if o' = B mod p, then
le{2,...,p—2}

The Index Calculus - fast attack on discrete logs

But first: Factoring by combining congruences.

Begins with Fermat’s observation:

n=x2—y?=(x—vy)(z+y), find z and y such that 22 —y? = n, with n = (x —y)(x +y) with x £y # 1 or
n.

Guess?: suffices to find 2 and y: 22 = y?> mod n [2? — y? = n* k] but  Z £y mod n then ged(z — y,n) is
a proper factor of n.

March 20th

Factoring using squares (see handout)

March 22nd

The Index Calculus
Index calculus for discrete logs in Zj

Given «a, 8 € Z;, where a is a primitive element and there exists an integer [ where (1 <1< p-1) such that
B =ca' mod p. Find .

Two phases:

1. Pre-computation: Pick a set B = {p1,p2,...,pp} of small primes. Let C' ~ |B|+ 10 = B + 10. Find
about C congruences mod p, each of the form a® = p{"’py;*’...p5"7 mod p where e; is an integer > 0.
Lemma: If I; = log 81 and Iy = log B2, then log(5182) =11 + 12 mod p — 1.

Proof: Let [ = log 8182. Then o = 8182 = a'1af> = oft"2 modp=1=11+1s modp—1

Each of these C' congruences can be written as xj = e jp1 + e jp2 + ... +ep jpp mod p —1

11



Try to solve the system of congruences 21 = ej 191 +...eg1pp mod p—1... zc = ey cp1+...+e,cPB
mod p—1

This yields {logps,logps,...,logps}
2. Computation phase: pick random values of s € {1,...,p — 1}
Compute v = fa® mod p and hope that you can factor v over B
If it works for some s for which log(fa®) = r1logp1+...4+rplogpp mod p—1, you have log f+sloga =
rilogpy + ...+ rplogpp mod p—1

B
=logB=> rilogp; —s mod p—1.
i=1
log 8 = [ means 3 = a!. Therefore loga = means a' = o.

A tiny but useful example: p = 131, = 2. Find log 37, that is the value of I such that 37 = 2!
mod 131.

let B=1{2,3,5,7}. logn =logyn mod p

log2 = 1 because we know 2! = 2.

28 =53 mod p,2'2 = 57,21 = 32, 23453 x 52
Thus 1 =log2 mod 130.

8 =3logb

12 =logb + log 7

14 = 21log 3(130) = 7 = log3 mod 65

34 = logs +2log5 mod 130

Thus: logh = 46,log 7 = 96,log3 = 72 mod 130

mod 130

2log3 = 14( mod 130) = log3 = 7 mod #10302). Therefore log3 = 7 mod 65 so log3 = 7 or log3 =
7465 mod 130

Try factoring 37 % 2" over {2,3,5,7} mod 130.

Turns out, 37 2*3 = 3% 5% 7 mod 131

log 37 + 43 = log 3 4+ log 5 + log 7 mod 130

Therefore log 37 = 72 + 46 + 96 — 43 mod 130 =41 mod 130.
Sure enough, 24! = 37 mod 131.

March 25th

Elliptic Curves - the set of all solutions (z,y) to the equation y? = 2® + ax + b, where 2% + ax + b has no
multiple (repeated) roots.

Fact: x2 + ax + b has no multiple roots if and only if A = —4a3 — 27b% # 0

Suppose f(x) = (z — r)g(z), using the product rule, f'(z) = g(x) + (z — r)g’(z). Therefore r is a root of
f'(z) if and only if 7 is a root of g(x). Thus f(x) = (x —r)? * h(x).

In how many points does a line (y = ma + k)intersect y? = 23 + ax + b? 3
{z = r} meets {y* = 23 + ax + b} in two points: x =r,y? =12 +ar +b

Let [ be the line y = mxz+k. How many points of intersection are there between [ and the elliptic curve?

12



Substitution of y = ma + k yeilds m2x? + 2mkx + k? = 2® + az +b. This becomes 22 —m?2? + (a — 2mk)x +
b—k*=0

Let a = (x1,y1) and b = (z2,y2) be on the intersection of the curve.

Loy1 = mz1 + k,y2 = maa + k = m = £2=2 (slope)

Using the factor theorem, we have that if 71, 7,73 are the roots of 2% — m22% + (a — 2mk)x + b — k? = 0,

then 22 —m?22%2+ ... = (x —r)(x —72)(x—73) = (x—21)(w —202) (2 —73) = 23 —m22? + ... = 23 + 22 (—21 —
T — 7"3) =+ ...
Thus —m? = —z1 — ©o — 3. Therefore if (21,91) and (x2,y2) are on the line y = ma + k intersected with

2

y? = 23 + ax + b, the third intersection (r3) satisfies m? = z1 + x5 + r3, that is r3 = m? — 1 — 2o (which

gives us the x coordinate).

An example: The curve is y? = 2% — 22 +5. a = (1,2),b = (2, —3). The slope is therefore m = —5. The third
root is therefore 3 = m2? — x1 — x5 = 22. For (r3, s3) is on the curve, then ss satisfies S?,, =223 _-92%2245=
10648 — 44 + 5 = 10609 = (£103)2. Therefore s3 = 103 or —103. Thus (r3, s3) = (22, —103).

Def. Given A(x1,y1) and B(xs,y2) on the curve, let R(r3,x3) be the third point of intersection and define
T3 =173,y3 = —83, then A+ B := (23,y3).

March 29th

Discrete Log Problem

Def. Let p > 2 be a prime and get GCD(n,p) = 1. Then (%) =1if 22 =n mod p has a solution and if —1
if 22 =n mod p has no solution. Also, if p|n, set (2)=0

April 1st

Diffie-Helman Key Agreement

Public information: a large prime p, a generator (primitive element) ~ of L,
Private information:

Alice: a random integer a € {2,...,p — 2}

Bob: a random integer b € {2,...,p — 2}

Alice computes A =~% mod p offline and Bob computes B =~* mod p offline.
Alice sends A to Bob who sends B to Alice.

Alice computes B* mod p and Bob computes A® mod p

Since B® = (%)% =4 = 4% = () = A’ mod p

Thus B* is the shared secret

Ex. p = 27001, = 101. Alice picks a = 21768, computes A = v* = 7580 mod p. Bob picks b = 9898,
computes B = +? = 22181 mod p

Alice computes B* = 10141 mod p. Bob does the same thing and reaches the same number. Thus the
secret key S = 10141.

An attack on the D-H: Eve in the middle

Eve knows p and +y. Eve picks some random z € {2,...,p — 2} and intercepts v* and +’. She then computes
a

7# and sends it to both of them. Eve then computes (7%)* and Alice computes (v*)® thinking its (7°)°.
Same thing with Bob.

Thus (7%)* = (¥)* = Sa, (7*)* = (v*)" = S

13



Alice + S, — Eve < S, — Bob
Elliptic Curve DH

Public Info: a large prime p and a different prime ¢, an elliptic curve E over Z, such that |E(Z,)| = ¢, and
a point p € E of order q.

Private Info: Alice chooses a random a € {2, ...,p — 2} and computes the point A = a*p on E and sends A
to Bob. Bob picks b € {2,...,p — 2} and sends B = b p to Alice.

Alice: ax B=ax(bxp)=axbxp=bxaxp=bx(axp)=bxA

April 3rd

Digital Signatures

Desired properties: uniquely identifiable, verifiable, unforgeable, tied to document, timestamp, sender cannot
repudiate

RSA signature scheme
Setup: n = pq where p,q prime, e and d encryption and decryption exponent.
Alice sends message (m) to Bob.

Alice establishes her RSA system with n,4, her public mod and ea,da, her encryption and decryption
exponents.

Alice sends y = m94 mod na (the signature) and m (the message)

The signature is (m,y).

Bob computes s = y*4 mod n4.

s =m mod ny, verification is ok. s Zm mod ny, verification is not ok.

Note: say s = y®4 = (m?)®4 = m¥44 = m mod na. daea = 1 mod na,d(n)|lde = m® = m
mod n

El Gamal:

Public parameters: large prime p, primitive element a € Z*, f = o® mod p
Private parameters: an exponent a € {2,...,p — 2}

Alice sends a pair (y1,y2) to Bob.

Alice picks k € {2,...,p — 2}, sends y; = a* mod p and yo = m * ¥ mod p
GCD(k,p — 1) = 1 (relatively prime)

—a

mod p =m mod p

= m(a®% x a=%)

Bob computes o (y; 1)* mod p = m x B* x (a¥)
El Gamal is slow and complicated!
El Gamal signature scheme:

¥ modp (y=y1)and 6 = (m —ay) * k™! mod p— 1.

Alice computes 7 = «
For a signature scheme, GCD(k,p — 1) = 1.

Alice sends (m,~,d) to Bob.

Bob computes v; = 87 *v° mod p and v = ™ mod p.
Verification is ok if and only if v; = vy mod p

m:

Want o™ = 79° mod p. Leave 7 as in the exponent. Therefore o™ = a®’y? mod p = «
a® k5 mod p thus a primitive where the previous holds if and only if m = ay + k6 mod p — 1.

Y ok*8 mod p=

14



April 5th

ElGamal in Z7, p a large prime

a is for long-term use, k is short-term (session key)

Example. p = 467, a = 2,a = 127, 8 = 2'27 = 132 mod p

Alice signs m = 100, using k& = 213

Then k~! = 431 mod p

Alice calculates v = 2213 =29 mod p and § = (100 — 127 % 29)431 mod p — 1 = 51
Thus signature is (100,29,51)

vy = 2190 =189 mod p and v; = 13222 % 29°! mod p = 189 mod p

Hash function: a mapping h : S — T where S is a set of strings of arbitrary length and T the set of all
strings of some fixed length

for DSA (digital signature algorithm), 7" = 160 bit strings

Public parameters: p is an L-bit prime, 512 < L < 1024, ¢ is a 160-bit prime such that ¢g|p — 1, g is a
primitive element mod p (ord,(g) = p — 1), h is a hashing function mapping arbitrary strings into 160-bit
strings, o = gp2;1 mod p

Note g has order p — 1 so a = ng_l mod p has order ¢ —a? =1 mod p. where § = a® mod p (a is Alice’s
private info)

To sign m, Alice picks k € {2,...,q — 2}

Alice computes v = (v* mod p) mod q. § = (h(m) + a(y))k~!

mod gq
Alice sends (m, 7, )

a is a long-term private key, k is a short message key

Bob computes e; = h(m)d~! mod ¢ and es =5~ mod ¢

Verification is ok if and only if (a®*8%2 mod p) mod g =~

April 8th

Secret splitting - dealer wants to split a secret value M between A and B
D picks a random positive integer, gives r to Alice, M-r to Bob.

Pick n > any potential msg. D picks a random integer r mod n. Gives r to Alice (r mod n) and M-r to Bob
(M-r mod n)

Add C to this, give r to A, s to B, M-(r+s) to C

Def. Let 0 < ¢t < w, positive integers

A (t,w) threshold scheme is a way to share a message value M among w participants such that
1. any t or more participants can reconstruct the message
2. but no set of <t — 1 participants can do so

Let p be a prime > w + 1. Dealer constructs a polynomial f(x) with coefficients in Z, of degree < ¢ — 1. say
f(@)=ao+az+ ...+ a2t

The dealer assigns player 4 the share (z;,y;) where y; = f(x1) mod p. The secret is ag.
Ex. p=17,t = 3,w =5, P, P3, P5 are collaborating.

P, =(1,8),P; =(3,10), Ps = (5,11) mod 17.

(1) ap + a1 + a2 =8 mod 17

15



(3) ap + 3a1 +9a2 =10 mod 17
(5) ap + 5a1 + 25a3 =11 mod 17
Solve the system to get a1 = 10,a2 = 2,a9 = 13 mod 17

The polynomial f(x) has a very nice expression as a sum of ¢ terms, each term being almost a poly I;(x)
with the feature that [;(zr) =01if j # k = 1if j = k. Thus f(z) = li(x)y1 + lo(2)y2 + ... + I:(2)ys

April 10th

Threshold schemes

From a population of w participants, devise a scheme such that any ¢ or more participants can determine
the value, but any fewer than ¢ participants cannot.

A polynomial f(x) of degree t — 1 can be determined uniquely given any ¢ distinct points.

P; gets (x;,y;) we have y; = f(x;) = ap + a;z; + ... + at_lxz_l with a1, ...,a;_1 are randomly chosen from
[1..q] where ¢ is a prime “large enough” and arithmetic in mod ¢ and ag is the secret.

1oz 23 . 2t
-1

1 a9 22 ... 2t

Let V = 2 2
1 z x? xfl

det(V) =3, ;(z; —x;) 0 mod ¢ because z;s are all different.

ao hn
Therefore can solve for a; : V | ... | =

at—1 Yt
(1) Find polynomials [;(z) where 1 < i < ¢ such that [;(z;) is 1 if i = j and 0 if 7 # j
Ex. t =4,i=3.
g(x) = (x—x1)(z —x2) (v —a): g(x;) =0if 2; = 21, 22, 24. g(x3) = (3 —21) (23 —22) (23 —24) # 0.

Let l‘g(x) _ _(z—zm)(z—z2)(z—24)

(z3—z1)(z3—22)(T3—24a) "

(21,91), .-, (x4,y4) given points on curve.
L(z) = yili(2) + yala(2) + ysls(2) + yala(z) = ao + a1z + aza® + azz®
L(0) = ag is the secret.

t
L(z) = Zlyz'lz'(ff)
t
Therefore L(0) = g = >_ y:1;(0)
=i

li(z) = [] =—=%. Therefore [;(0) = ] (a:-iv;;.)
S jrid<i<e T

t

(4,25), (=7 85),(2,19). L(0) = a0 = Y wi [] 5% = 233 vi [l 725 = () (55) +ue(25)(55) +
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April 15th

Variations on Shamir’s Scheme

A scheme with t = 8

Boss has 4 shares, daughter have 2 shares apiece. workers have one share apiece.

# daughters ng > 4 or # workers n,, > 8

A scheme with two companies A and B

They agree that it takes 4 members of company A and three members of B to secure the key (Secret)

Company A has a secret S4 and B has another secret Sp. Secret S, is obtained using a threshold scheme
with t = 4 and Sp is obtained using t = 3.

Master secret = S4 + Sp

A military organization has a general, two colonals, and five recruits.
Only three combinations are allowed:

The general, both colonels, all 5 grunts, or one colonel and 3 grunts.
etc..

Blakley’s Threshold Scheme

t
For shamir used I; = [] =e)) L(z) = > y; x l;(x), secret is L(0)
i=1

g ST
t =3, let xp = secret. Let p be a large prime
Pick yo, z0 € Random(p)
Let @ = (x0,¥o0,20) in 3D mod p
For each player, assign a;,b; € Random(p), 1 <i <t
Set ¢; = 29 — a;xg — b;yg mod p

Note that z = a;x + b;y +¢; mod p is a “plane” in 3D over Z,

April 22nd

Zero knowledge proofs
Results: Let p be an odd prime, and let g be a primitive element mod p (ie. F % = {g,4°,...,g""'})

There exists exactly L;Q square mod p, a is a square mod p means X2 = ¢ mod p has a solution and
p fa.

If1<i,j< %, then i2 = j2 mod p means p|(i — j) * (i + j). Primality = p|i — j or pli +j. If i # j, then
pli+j. But 2 <i+j < p—1. Therefore p fi + j. So there exists at least ”2;1 squares mod p.

The squares mod p are exactly the even powers g2, g%, ..., g ! mod p. The nonsquares are the odd powers
of g mod p.

If a is a square mod p, then a®> =1 mod p.
If a is a nonsquare mod p, then a®> = —1 mod p.

Proof. First, g is a generator (primitive element) mod p so its order is p — 1, which means g?~' =1 mod p
and ng_l Z1 mod p.

(g%)2 =1 mod p so g% = —1 mod p where p is a prime.

Suppose a is a square

17



Ex. p=19,9 = 2 is a primitive element.
Suppose a is a square mod p. Then a = g?* mod p, so that a”= = (¢%*)*2 = (¢»"1)* =1 mod p.

20+1 21y

Suppose a is a nonsquare mod p. Then a = g mod p and so a'T = g5

ng_l = —1 mod p.

Euler’s Criteron: If p is an odd prime and (a,p) = 1, then a"@ =1 or -1 mod p, according as a is or is not
a square mod p.

p+1

Key Lemma: Let p =3 mod 4. If a is a square mod p, define b := a4
Ex. 7is asquare: a =7,p=19,50 22 =5 b =7 x0? = y'% b= 11, > = 121 = 7+ b x 19.

mod p. Then b> = ¢ mod p.

Proof: b? = (apTJrl)2 modpza% mod p = a7 mod p = o xa modp = 1%xa = a mod p as

claimed.

Ex. (a zero knowledge proof) Bob finds two large primes p and ¢ such that p = ¢ =3 mod 4, and construct
n = pq.
Bob tells Alice “I know the factorization of n.”

Alice chooses x at random between 1 and n, sends Bob the number y where y is the least positive residue of

z* mod n.

(challenge - response - notification)

Bob receives y from Alice, knows y is a square mod n. Since y = z* = (22)? mod n, it is also true that
y = (2%)? mod p and ¢ = (2?)? mod q.

g+1
4

Bob computes iypTH mod p and +y mod ¢q. These give 4 square roots of y mod pg by the Chinese

Remainder Theorem.
However, only one of these square roots of y is itself a square!

Bob finds the value v mod n that is in fact a perfect square and sends it to Alice.

2

Alice knows z, and so computes 2 mod n. If 22 = v mod n, verification is achieved.

April 24th

Alice knows only n, Bob knows n = pg, p=¢ =3 mod 4
Alice picks z €Rand(n), sends y = z* mod n to Bob.

+1 +1

Bob receives y from Alice, computes a = +y ¢ mod p. Saw that y 4
b= j:yq4j mod gq.

is a sqrt of ¥y mod p if y is a square.

Exactly one of hte four systems w = +a mod p, w = +b mod ¢ has a solution that is a perfect square mod
pp and mod ¢ and therefore mod n.

Bob sends w to Alice.

2

Alice computes 2 mod n. If 22 = w mod n, then verification is Ok.

Shamir’s zero knowledge proof protocol (Repeatable protocol)
Bob chooses p = ¢ =3 mod 4, sends n = pq to Alice.
Picks some integer I that represents some sort of personal ID

Finds a small positive integer ¢ such that v = I||c is a square mod both p and ¢ (and thus n)

Note: Bob can find a square root v mod p and mod q and hence mod n. There exists u such that v = u?

mod n

Bob sends v to Alice.

2 1

1. Bob chooses r €Random|[n|, sends Alice two values: z =r? mod n and y = vz~ mod n
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2. Alice checks that the product 2y = v mod n. Alice has seen v = I||c mod n and z and y.
Alice then picks a random bit b = 0 or 1, sends to Bob.

3. If b= 0, Bob sends r to Alice. If b = 1, Bob sends ur~! to Alice

4. Alice squares what she receives mod n.

If b = 0, Alice squares r, sees r2 =z mod n

If b =1, Alice squares (ur~1)2 =vr2=vr-! =y modn

If b = 0 and answer = z or if b = 1 and answer = y, verification is achieved.

Finding squares

Let p be an odd prime and let GCD(a,p) = 1.

Define the Legendre Symbol (3) by (£) = 1 if 2? = a mod p has a solution and = —1 if there is no solution.
Thus (15) = 1 because 7= 64 = 82 mod 19.

(%) satisfies some rules:
1. Let GCD(a,p) = GCD(b,p) = 1, then (%) =1
2. If a=b mod p, then () = (%)
3.(9)=0G)G)
p—1

4. Euler’s criteron: == (%) = a®™ mod D

>
SRSy

5. The special cases:

(a) (_?1):(—1)1]71:1ifp51 mod 4 and -1 if p=3 mod 4

p2-1

(b) (3)=(-1)"s =1ifp=+1 mod8and-1ifp=+3 mod 8
(c) If p and g are distinct odd primes, then (£) = (1)(-1)

April 29th

S-T
Given p a prime, with GCD(a,p) = 1, Find 2 : 22 = a mod p or show none exists

Compute (%) If it is -1, stop., else go

Write p —1 =2, t odd. Find n: (3) = -1

Initialize 2 = a2 (initial guess), b = a' (correction factor), g = n' and ord,g = 2° = g2 = n*2" " =
p—1

nz =(3)=-1 modp

flag = 1, r = s, while flag != 0, find least m where 0 < m < r — 1 with b*" =1 mod p

2r—m—1

if m = 1, break and return x. else update £ = Xpepr = T * g ,b = bpeat = b x gQT_m,g = Qnext =

or—m

g y ' = Tnext =M
Example: p =113

(3)=1,p—1=167T=27,5s =4,t - 17,
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