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Jan 23rd

Diffie-Hellman Key agreement, AES

Jan 25th

Given N = (pq)

M → C = Me( mod N)

C → Cd ≡Mde ≡M mod N

Euclidean GCD Algorithm + Extended Version

Def. Let a, b ∈ Z and let a 6= 0: we say a|b (a divides b) provided there exists an integer c such that b = ac.
a|b & b|c = a|c
a|b & b|a, a = ±b
a|b and a|c and p, q ∈ Z → (a|pb+ qc)

Let a, b ∈ Z and n ∈ Z, n 6= 0. We say a is congruent to b mod n (written a ≡ b( mod n) provided a− b is
divisible by n (ie. a− b = d ∗ n, d ∈ Z).

Congruence mod n is an equiv relation:
∀a, b, c, n 6= 0, a ≡ a mod n, a ≡ b⇒ b ≡ a, a ≡ bb ≡ c⇒ a ≡ c mod n, a ≡ bc ≡ d mod n⇒ a± c ≡ b± d
mod n

Common divisors

Let a, b ∈ Z, d is a common divisor of a, b provided d|a and d|b

Def. Let a, b,∈ Za, b 6= 0, then g is a GCD of a and b provided g is a common divisor of a and b and g is
the largest such common divisor.

Facts: g is a GCD of a and b if g|a and g|b, g > 0, and if d is any common divisor of a and b then d|g

The GCD algorithm and its extension
Given a, b ∈ Z, b 6= 0 there exists unique g, r ∈ Z, a = gb+ r, 0 ≤ r < b.
If d|a and d|b, then d|a− qb so d|r.
If d|b and d|r, then d|qb+ r so d|a.
a = qb+ r, a ≤ r < b, gcd(a,b) = gcd(b,r)
∃r1 : b = q1r + r1, 0 ≤ r1 < r
∃r2 : b = q2r1 + r2, 0 ≤ r2 < r1
r > r1 > r2
Last remainder = GCD

Ex. GCD of 118 and 267
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Jan 28th

RSA Encryption Algorithm (Rivest, Shamir, Adelman)

How it works: Bob sets up the system. He chooses a large positive integer N (1024 bits) where N =
p ∗ q and p and q are distinct primes about 512 bits each. He can then computes an integer φ(n) :=
a ∈ Z|1 ≤ a ≤ N, gcd(a,N) = 1. He chooses two integers e and d such that e ∗ d = 1 + kφ(N) for some
integer k. He then publishes both N and e (e is te encryption exponent). Bob keeps d, p, q, and φ(N)
private.

Alice wants to send a message to Bob. She digitizes the message and breaks it into blocks, where each block
= positive integer < N. Alice sends a block M by encrypting it: namely she computes C ≡ Me( mod N)
and sends it to Bob. (Recall: a ≡ b mod m means a−b is a multiple of m, ie. a = b+km). Bob receives the
message and decrypts it by computing Cd = (Me)d ≡Med mod N and since ed = 1 mod φ(N), Med ≡M
mod N .

φ(pq) = (p− 1)(q − 1), if N can be factored, the system can be broken as φ(N) can be found. e is normally
chosen for ease of computation (sparse, more 0s than 1s).

Euclidean Algorithm for computing GCD(a, b)

Euler-Fermat theorem: let m be a positive integer and let GCD(a,m) = 1 and aφ(m) ≡ 1 mod m.

Jan 30th

Fast Multiplication/Exponentiation: known as double and add or square and multiply.

19 37

9 74
-4- -148-
-2- -296-
1 592
= 703

Binary representation of 19: 10011 = 16 + 2 + 1.
Binary reversed, add values under 1s:

1 1 0 0 1
37 74 148 296 592

= 703

19 * 37 = 37 + 2*(37+2*2*2*37)

Cross out rows with even values on the left, add up remaining values on the right to get the product.

To multiply x by, say, 19: (go from left to right)
1 0 0 1 1
1x 2x 4x 8x 18x
1x 9x 19x

To multiply x by, say, 112:
1 1 1 0 0 0 0

2x 6x 14x 28x 56x 112x
x 3x 7x

To calculate x53, 53 = 110101
1 1 0 1 0 1
x x2 x6 x12 x26 x52 Answer
x x3 x13 x53 Mult

Shift left and add one if the bit is 1. To find x545 takes 9 squaring and 2 multiplications.
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Feb 1st

Chinese Remainder Theorem

Let m1, ...,mn be pairwise relatively prime positive integers and let q1, ..., qn be integers. Then the system
of congruences x ≡ q1 mod m1, ..., qn mod mn has a solution which is unique mod (m1, ...,mn).

Proof: Let M = m1, ...,mn. For 1 ≤ j ≤ ni let Mj = M
mj

Claim: If 1 ≤ i ≤ n, then ... (see book)

Feb 4th

Recall n be a positive integer and let a ∈ Z+ with gcd(a, n) = 1 (standard hypothesis)

If e ∗ d ≡ 1 mod (p− 1)(q − 1), then (Me)d ≡M mod pq (based on Euler-Fermat Theorem)

Def. Given the standard hypothesis, the order of a mod n written ordna is the least possible r such that
ar ≡ 1 mod n if it exists.

Theorem. Given the standard hypothesis, ordna does exist.

Proof. Write down powers of a mod n: a, a2, a3, ... mod n
Ex. Powers of 3 mod 23: 3, 9, 14, 12, 13, 15, 2, 6, 18, 8, 1, 3, 9, ... repeats! (pigeon hole principle (PHP))
By PHP, after at most n+1 steps, the powers repeat.
Let i < j and let ai ≡ aj mod n.
Ex. 58 ≡ 538 mod 31. 58 has one inverse mod 31 so 5−8 ∗ 58 ≡ 5−8 ∗ 538 mod 31, 1 ≡ 530 mod 31

Because gcd(a,n)=1, it follows that a is invertible mod n (recall the affine cipher). If a∗ satisfies a∗a ≡ 1
mod n, then (a∗)iai ≡ (a∗)iaj mod n. ∴ 1 ≡ a−iaj ≡ aj−i mod n and j − i > 0. Thus r exists and the
least such positive number is the order.

Last time - looked at ord7a for 1 ≤ a ≤ 6.
a 1 2 3 4 5 6

ord7a 1 3 6 3 6 2
For all a, gcd(a, 7) = 1, ord7a is a divisor of 6.

n = 8
a 1 3 5 7

a8a 1 2 2 2

n = 9
a 1 2 4 5 7 8

a9a 1 6 3 6 3 2

What you notice is that the number of possible values of a’s is related to the order

Def. Let n be a positive integer. Define φ(n) = # of positive integers such that 1 ≤ a ≤ n and gcd(a, n) =
1. φ(n) is called the Euler-Phi function (EulerPhi[n] in Mathematica).

For p a prime: φ(p) = p− 1.
q another prime, q 6= p. φ(pq) = pq−q−p+1; throwing away (p, 2p, ..., (q−1)p, qp) and (q, 2q, ..., (p−1)q, pq)
but leaving one pq. φ(pq) = pq − q − p+ 1 then factors into φ(pq) = (p− 1)(q − 1).

φ(p3) = p3 − p2 = p2(p− 1) = p3(1− 1
p ); throwing away (p, 2p, ..., (p2 − 1)p, p2p)

Feb 6th

Let gcd(a, n) = 1; n > 1 such that ak ≡ 1 mod n

Given such n and a, ordna exists (proof by PHP, any string of n+1 consecutive powers of a mod n must
have a repeated number. If ai ≡ aj mod n with i < j, then aj−i ≡ ai(aj)−1 with j − i > 0.
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We looked at powers of 3 mod 23: ....

Fermat’s Little Theorem: Let p be a prime and get gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Feb 8th

Proof: if gcd(a,n) = 1 and ak ≡ 1 mod n then ordna divides k.

Suppose ak ≡ 1 mod n. Let k = q∗ordn(a) + r with 0 ≤ r <ordn(a)

Show r = 0 by def and by assumption, 1 ≡ ak ≡ aq∗ordn(a)+r ≡ (aordn(a))q ∗ ar mod n ≡ ar mod n.

Thus ar ≡ 1 mod n, 0 ≤ r < ordn(a) and so r = 0 ∴ k is a multiple of ordn(a).

Cor. Since aφ(n) ≡ 1 mod n by Euler-Fermat theorem, it follows that ordn(a)|φ(n).

Def: primitive element: let p be a prime. A primitive element mod p is an integer α such that α has order
p− 1 mod p.

Assumption: every prime has a primitive element.

Given φ and α, a primitive element mod p. Solve αk ≡ β mod p where β is given.

The mapping of Z∗p to Z∗p by k → αk mod p is 1-1 and onto.

Nice theorem (5.8): Let p be a prime > 2 and let α ∈ Z∗p. Then α is a primitive element mod p if and only
if for each prime divisor q of p− 1, αq 6≡ 1 mod p.

Proof: Let α be a primitive and let q be a divisor of p− 1. α primitive ⇒ ordp(α) = p− 1. Since q|p− 1 and

q is a prime, we have that 1 < q ≤ p− 1 and 1 ≤ p−1
q < p− q. By def of ordp(α), α

p−1
q 6≡ 1 mod p.[p−1q ≥ 1

and p−1
q <ordp(α)]

Suppose α is not primitive. Let ordp(α) = i < p− 1. 1 ≤ i < p− 1; p−1
i is an integer ≥ 2.

Let q be a prime divisor of p−1
i . Then q is a prime divisor of p − 1. So p−1

i = qd for some integer d. So
p−1
q = di. Then α

p−1
q = αdi ≡ (αi)d = (αordpα)d ≡ 1 mod p.

Feb 11th

p = 2q+ 1 where q is a odd prime. p is called a SophieGermain prime. Given α 6≡ ±1 mod p. Prove that α
is a primitive element if and only if aq ≡ −1 mod p.

Use the Nice theorem (5.8). Let p − 1 = q1, ..., qr. Then α is a primitive element mod p if and only if

{α
p−1
q1 , ..., α

p−1
qr } contains no occurrences of 1 (mod p). We see that p− 1 = 2q, so the list of prime divisors

of p − 1 is {2, q}. Consider α
p−1
q mod p. By def, p−1

q = 2, so we test α2 mod p. Is α2 ≡ 1 mod p? No.

For p is a prime and if α2 ≡ 1 mod p, then (α − 1)(α + 1) ≡ 0 mod p ⇒ p|(α − 1)(α + 1) ⇒ p|(α − 1)

or p|(α + 1) ⇒ α ≡ 1 or −1 mod p. Therefore by the N.T., α is a primitive if and only if α
p−1
2 = αq 6≡ 1

mod p. But α
p−1
2 = αp−1 ≡ 1 mod p. Therefore (aq)2 ≡ 1 mod p ⇒ αq ≡ ±1 mod p. Therefore α is a

prime if and only if αq ≡ −1 mod p.

n = pq, φ(n) is known, φ(pq) = (p − 1)(q − 1) = pq − p − q + 1 = n − p − q + 1. p + q = n + 1 − φ(n).
⇒ p2 + (φ(n)− n− 1)p+ n = 0

RSA: Given p and q large primes and exponents e and d, to encrypt: M → Me mod n. To decrypt:
C → Cd ≡ 1 mod n.

The idea is that p and q are private, n = pq is public, d is private, e is public. Knowing p and q, one
cna compute φ(n), from ehich one can compute d, where ed ≡ 1 mod φ(n). Thus Cd ≡ (Me)d ≡ Med ≡
Mk∗φ(n)+1 ≡ (Mφ(n))k ∗M mod n. By EulerFermat, ≡ 1kM = M mod n.

Issues: how to choose p, q, e.
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The Monte Carlo algorithm - A yes-biased M.C algorithm is a randomized based algorithm for a decision
problem such that a YES answer is correct and a NO answer may be correct.

The Las Vegas algorithm - a random algorithm for a decision problem which may not give an answer. But
if it does, it is correct.

Tools for testing for primility

• The decision problem is called COMP(OSITE)

• Algorithms are yes-biased M.C

A yes-biased M.C has an error problem of ε y, in an instance in which the answer is “yes”, the algorithm
gives the (wrong) answer NO with probability ≤ ε.

FLT If n is a prime and gcd(a,n) =1, then an−1 ≡ 1 mod n.

Contrapositive: an−1 6≡ mod n⇒ n composite.

Feb 13

ap−1 ≡ 1 mod p for all a, (a, p) = 1 where p is a prime

If p− 1 = q1, ..., qk and a satisfies a
p−1
q1 6≡ 1 mod p for 1 ≤ i ≤ k, then a is a prime.

p = 2q+ 1, p− 1 = 2q. Want a to satisfy a
p−1
2 6≡ 1 and a

p−1
q 6≡ 1 mod p. a

p−1
2 ≡ aq? and a

p−1
q ≡ a2?

a 6≡ 1 mod p so a2 6≡ 1 mod p.

If a is primitive, aq 6≡ 1 mod p. aq ≡ a
p−1
2 mod p so (aq)2 ≡ ap−1 ≡ 1 mod p. Therefore aq ≡ 1 or −1

mod p.

φ(n) = pq−(p+q)+1, so p+q = pq+1−φ(n). q = n/p so p+n
p = n+1−φ(n)⇒ p2+n = (n+1−φ(n))p.

FLT: If n is prime and gcd(a,n)=1, then an−1 ≡ 1 mod n.

Contrapositive: If gcd(a,n)=1 and an−1 6≡ 1 mod n, then n is a composite.

Compositeness Test: yes-biased Monte-Carlo. Is n a composite?

Randomly pick a such that gcd(a,n)=1. Compute an−1 − 1 mod n. If an−1 − 1 6≡ 0 mod n return yes, else
return no.

Pseudo-primes (impostor:) a = 2, n = 341 = 11 ∗ 31. However, 210 ≡ 1 mod 11 by FLT for 11(*). Also,
25 = 32 ≡ 1 mod 31. Therefore 210 ≡ 1 mod 31. (**)

The system (*) and (**) of congruences has a unique solution mod 341. Thus 210 ≡ 1 mod 341 therefore
1 ≡ (210)34 ≡ 2340 mod 341 !!

Def. Let n be an integer > 1, and let gcd(a,n) = 1. Then we call a a pseudo prime to base b if b is an integer
that satisfies bn−1 ≡ 1 mod n and n is a composite. [n is a pseudo prime to base b]

So 341 is a pseudo prime to base 2. What about b = 3? 35 ≡ 310 ≡ 1 mod 11 (FLT). 310 ≡ 25 mod 31.
Now 330 ≡ 1 mod 31 (FLT). Thus (310)33 ≡ 133 ≡ 1 mod 11 ≡ 1 mod 31. Then 3330 ≡ 1 mod 341.
Therefore 3330 ≡ 3330 ∗ 310 ≡ 25 mod 341. Therefore 341 is a composite.

However! There are universal pseudo primes that fail all tests of compositeness. There exists numbers n for
which n is composite and yet for every b with gcd(b,n) = 1, bn−1 ≡ 1 mod n. n is a pseudo prime (x) if
gcd(x,n) = 1 and xn−1 ≡ 1 mod n.

ie. xn−1 − 1 ≡ 0 mod n.

Suppose xn−1 − 1 = f1(x)f2(x)...fr(x) mod n

If n is a prime and n|xn−1 − 1, then n|f1(x) or n|f2(x) or ... or n|fr(x).

2340 − 1 = (2170 + 1)(2170 − 1) = (2170)(285 + 1)(285 − 1) ≡ 0 mod 341. But 2170 ≡ 2 mod 341; 285 + 1 ≡ 2
mod 341; 285 − 1 ≡ 33 mod 341. Correct factorization next time.

Example: n = 561 = 3 ∗ 11 ∗ 17. gcd(b,n) = 1 ⇒ b560 ≡ 1 mod 561.
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Feb 15th

More about primality and compositeness

n is a pseudo prime to base b [psp(b)], if bn−1 ≡ 1 mod n and n is a composite, FLT: if ∃b : bn−1 6≡ 1
mod n and (b,n) = 1, then n is a composite.

2340 ≡ 1 mod 341 and 341 = 11*31

3340 6≡ 1 mod 341⇒ 341 composite.

bn−1 ≡ 1 mod n means bn−1 − 1 is divisible by n.

See: write n − 1 = 2km, with m odd. Then an−1 − 1 = a2
k∗m − 1 = (a2

k−1m + 1)(a2
k−2m + 1)...(a2m +

1)(am + 1)(am − 1)

If n is a prime, and n|an−1, then n must divide one of the factors over the RHS.

Yes Test for decision problem: n is composite: Factor n− 1 = 2km, with k is a positive integer and m odd.
Randomly choose a with gcd(a,n)=1. Set b := am. If b ≡ 1 mod n, return (”n is prime’) [No, n is not a
composite]. else for i = 1 to k − 1, do the following:

If b ≡ −1 mod n return (’n is prime’); else b := b2 endif. and for ; return (’n is composite’)

Miller-Rabin Test (above)

Thm. M-R is a yes-biased test for compositeness.

Proof 1: Suppose the M-R test returns yes. This is impossible if n is a prime. (work backwards in the
algorithm)

Fact: If n is prime and x2 ≡ 1 mod n, then x ≡ 1 or x ≡ −1 mod n.

Suppose n is a prime, let a be an integer rel. prime to n. Then an−1 = a2
km ≡ 1 mod n ⇒ (a2

k−1m)2 ≡ 1

mod n. But a2
k−1m 6≡ −1(else → NO). Therefore a2

k−1m ≡ 1 mod n. Thus 1 ≡ (a2
k−2m)2 mod n. No stop

so a2
k−2m ≡ 1 mod n Continue in this way to (am)2 ≡ 1 mod n. Therefore am ≡ ±1 mod n which would

have returned No.

Def. If gcd(b,n) = 1, n failes the M-R test (ie. test yields prime) and yet n is composite, we call n a string
pseudo prime to base b “spsp(b)”.

Ex. M := 2n − 1 = 24 ∗ 89 If 2n − 1 is prime, then n is prime.

Feb 18th

11213 * 104369 = 11703... (11212 * 104368 = 11702...) note that the first few digits are identical. p, q
1050, p ∗ q = 10100, φ(pq) = pq − p− q + 1 = n− (p + q − 1) thus we know that there is a finite number of
solutions. Find a factor of de− 1 that has the same length as N.

The integer factoring problem.

Classes of factoring methods

1. BFI: brute force and ignorance

2. Birthday match techniques

3. Using FLT and generalizations

4. Combination of congruences: If p|(x−y)(x+y) then p|x−y or p|x+y. The idea is to find two squares
X2andY 2 such that X2 ≡ Y 2 mod N but X 6≡ Y mod N . (Fermat)

Pollard’s p-1 algorithm 1974:

1. Let α be an integer 6= ±1 and GCD(α,N) = 1

2. Raise α to a very large power B mod N .
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If p is a prime divisor of N (GCD(α, p) = 1)and p−1|B, then αB ≡ 1 mod p. Therefore αB−1 ≡ 0 mod p.
Then GCD(αB − 1, N) is a multiple of p.

What has to happen for this to work? N = 488533, α = 2, B = 20!; B = 2 ∗ 3 ∗ ... ∗ 19 ∗ 20 so happens that
456 = 23 ∗ 3 ∗ 19|20! and 457 ∗ 1069 = N .

Feb 20th

Pollard p-1: Let N be a large composite number. If N has a prime factor p such that all prime power factors
of p− 1 are ≤M , where M is suitably chosen then the number αM − 1 for α 6= ±1, GCD(α,N) = 1 will be
divisible by p.

If GCD(α,N) = 1, then GCD(α, p) = 1 for each prime divisor p of N . If p− 1|M , then

1. αp−1 ≡ 1 mod p (by FLT)

2. αM ≡ 1 mod p (ordpα|p− 1 and p− 1|M)

3. ∴ p|αM − 1

4. ∴ p|GCD(αM − 1, N)

p − 1 algorithm: pick some value of B, an integer that’s “big enough but not too big”. [B! is going to be
over value of M ]

Find αB! mod N ans = α for [i = 0;i ≤ B;i++] ans := ansi mod N g = GCD[ans-1,N] if g6=1 or N, stop.
else keep going

PollardRho: Let N = pq. Iterate a random function f on ZN → ZN .

Ex. f(x) = x2 + 1 mod N , f ′(x) = f(x), f2(x) = f ◦ f(x), fn+1(x) = f ◦ fn(x)...

To factor N = pq, generate two sequences: x0 = 1, x1 = f(x0) = z; y1 = f(f(x2)) = 5

Feb 22nd

We know that if n is a prime > 2 and x ∈ Z, then x2 ≡ 1 mod n⇒ x ≡ ±1 mod n.

Note that if a
n−1
2 mod n, where gcd(a, n) = 1, then y2 ≡ (a

n−1
2 )2 ≡ an−1 ≡ 1 mod n (by FLT)

Therefore if gcd(a, n) = 1 and n is an odd prime, then a
n−1
2 ≡ ±1 mod n.

Consequences: Euler’s criterion: If n is an odd prime and gcd(a, n) = 1, then a
n−1
2 ≡ 1 or −1 mod n.

Def. If p is an odd prime, and gcd(a, p) = 1, if there exists a solution x such that x2 ≡ a mod p has a
solution, then we say that x is a quadratic residue (QR) mod p and x is a quadratic non-residue (QNR)
otherwise.

The squares mod 13: Squares: 1, 4, 9, 16 ≡ 3, 25 ≡ 12, 36 ≡ 10, Non squares: 2, 5, 6, 7, 8, 11

The powers of 2 mod 13:

k 1 2 3 4 5 6 7 8 9 10 11 12
2k mod 13 2 4 8 3 6 12 11 9 5 10 7 1

nonsq: 2 8 6 11 5 7
2 23 25 27 29 211

sq: 4 3 12 9 10 1
22 24 26 28 210 212

Euler’s Criteron Reinvented: Let p be an odd prime. Then a is a QR mod p if and only if a
p−1
2 ≡ 1

mod p.

Proof. If a is a QR mod p, then there exists b such that a ≡ b2 mod p. Thus a
p−1
2 = (b2)

p−1
2 ≡ bp−1 ≡ 1

mod p (by FLT)
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Suppose a
p−1
2 ≡ 1 mod p. Let g be a primitive element mod p. That is {g, g2, ..., gp−1} ≡ {1, 2, ..., p − 1}

mod p in some order. Therefore we may write a = gk for some integer k. Then 1 ≡ a
p−1
2 ≡ g

k(p−1)
2 mod p.

Thus p− 1|k(p−1)2 , so k
2 is an integer. k

2 = l, k = 2l, and so a = g2l = (gl)2 is a QR mod p.

Some notation: Let p be an odd prime and let a ∈ Z. Define the Legendre symbol (ap ) “a over p” by (ap ) = {
0 if p|a, 1 if gcd(a, p) = 1 and x2 ≡ a mod p has a solution [a is a QR mod p], -1 otherwise }

Euler’s Criteron (Final): If p is an odd prime and gcd(a, p) = 1, then a
p−1
2 ≡ (ap ) mod p

A question: suppose n is an odd integer and gcd(a, n) = 1, and a
n−1
2 ≡ ( an ) mod n. Does that imply that

n is a prime?

The Solovary-Strassen compositeness test: pick α, 1 < α < n, at random. If gcd(a, n) 6= 1, return composite.

Else x = ( an ). Set y = a
n−1
2 mod n. If x ≡ y mod n return prime. else return composite.

Feb 25th

Midterm 1: Bring paper!

Topics: Overview PKC, XGCD, RSA, Monto Carlo and Las Vegas Test, Square and Multiply, Issues with
RSA, CRT, Z∗n (set of numbers invertible mod n), FLT, Euler-Fermat, φ(n), orders of elements (ordn(a)),
primeality testing (finding primes), primitive elements, certificates of primitivity, why RSA is hard to break,
pseudoprimes, psuedoprime test (if an−1 ≡ 1 mod n, return PRIME, else return COMPOSITE), strong
pseudoprimes, Miller-Rabin Test (n − 1 = 2e ∗ t, t odd, if n is prime, then n divides one of the factors of

αn−1 − 1 = (αt − 1)(αt + 1)(a2t+1)....(a2
e−1t + 1)), Factoring, Pollard p− 1, Pollard Rho

Given p a prime > 2, and a ∈ Z, define (ap ) by ...

Euler’s Criteron: If gcd(a, p) = 1, then a
p−1
n ≡ 1 or −1 where a is a QR mod p or a QNR mod p respec-

tively.

Showed that if g is a prime elt mod p and a ≡ gk mod p, then a is a square mod p if and only if k is
even.

Euler’s Criteron showed that if p is an odd prime and gcd(a,p) = 1, then a
o−1
2 ≡ (ap ) mod p

Solovay-Strassen Test (yes-biased for “n is composite”) For random a, calculate a
n−1
2 and ( an ). If they are

equal, return prime. else return composite.

Ex. Find ( 7411
9283 ) In Mathematica, use JacobiSymbol[7411,9283].

Let n be odd and positive. Thus, n = pe11 ...p
er
r , pi all odd. Let a ∈ Z, then define the Jacobi Symbol

( an ) :=
r∏
i=1

( api )ei

Rules - Let a, b ∈ Z and n an odd and positive. Then:

1. If a ≡ b mod n, then ( an ) = ( bn )

2. ( 2
n ) = 1 if n ≡ 1 or −1 mod 8, −1 if n ≡ 3 or −3 mod 8

3. (abn ) = ( an )( bn )

4. QRL: If m and n are odd positive integers and gcd(m,n) = 1, then (mn ) = ( nm ) if n ≡ 1orm ≡ 1 mod 4

Mar 1st

Chapter 6!

Discrete log problem mod p: given a prime p, a primitive element g mod p and an integer β, we know there
exists l ∈ {1, 2, ..., p− 1} such that gl ≡ B mod p given g and β, find l.
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Given bx = y where b, y ∈ R+ then x ln(b) = ln(y) so x = ln(y)
ln(b)

Cant do this with mods!

Mod 13: g = 2. by log y is meant the number l such that 2l ≡ y mod β

l 1 2 3 4 5 6 7 8 9 10 11 12
2l mod 13 2 4 8 3 6 12 11 9 5 10 7 1

Rearrange 2l mod 13 to invert permutation

2l mod 13 1 2 3 4 5 6 7 8 9 10 11 12
l 12 1 4 2 9 5 11 3 8 10 7 6

primitive element is called a generator in modern algebra

For moderately large prime, the permutation of logs is hard to determine.

Alice — Bob

Public Key: P a large prime, g and a primitive element mod P .

Private Information: integer mod P − 1

Alice picks α, Bob picks β

Alice computes gα mod P , calls this A

Bob computes gβ mod P , calls this B

Alice sends A to Bob, Bob sends B to Alice

Bob computes Bα. Alice computes Aβ

Since Bα = (gβ)α ≡ gβα ≡ (gα)β = Aβ mod P

Thus Alice and Bob have a shared secret number.

March 4th

El Gamul crypto system - Discrete logs in a general setting

G is a finite group under multiplication such as Z∗p

α ∈ G has order n where n is the smallest positive integer k such that αk = 1 where 1 is the identity el’t of
G.

Given discrete log problem in G: given β known to be a power of α, find the power. That is, given α and
β = αl, find l.

Define< α >= {αk : 0 ≤ k ≤ n−1} where n= order of α. Given β ∈< α >, find the unique l ∈ {0, 1, ..., n−1}
such that β = αl.

The El Gamal cryptosystem.

Alice — [Eve] — Bob

Alice sends message to Bob

Public Info: takes place in Z∗p, the non-zero integer mod p (large prime). The public information is then

prime p and a primitive element α mod p (α ∈ Z∗p, and < α >= {αj : 0 ≤ j ≤ p− 1} = Z∗p)

Bob chooses some random integer a ∈ {1, ..., p − 1} and computes β ≡ αa mod p. Bob keeps a secret and
publishes β.

Thus the public information (key) is p, α, β. Bob’s private info is a. Alice’s private info is a randomly chosen
integer k ∈ {1, ..., p− 1}.

To send a message X, Alice computes y1 ≡ αk mod p and y2 = X × βk mod p.

Alice sends the pair (y1, y2) to Bob.

9



To read the message, Bob knows that y2 = X × βk and β = αa. Thus y2 = X × βk ≡ X × (αa)k ≡
X × (αk)a ≡ X × ya1 .

Because Bob knows a, X ≡ y2 × (ya1 )−1 mod p for y2 × (ya1 )−1 = X × ya1 × (ya1 )−1 = X mod p. Thus Bob
knows X.

If Eve can compute discrete log mod p, then Eve can read the message.

Do not reuse α or k but a can be reused.

Attacks on the discrete log problem

Shanks Algorithm (also known as “baby step giant step”) is for solving the discrete log problem.

Given α, β, where β = αl, ord(α) = n, and 0 ≤ l ≤ n− 1

All in a group G where α has an order n.

Set m = ceiling p
√
nq = least integer ≥

√
n. (ceiling(300) = 18)

Stinson uses p
√
nq = m

From two lists of ordered pairs:

1. L1 = {(j, αmj) : 0 ≤ j ≤ m− 1}

2. L2 = {(i, βα−i) : 0 ≤ i ≤ m− 1}

0 ≤ l = logα β ≤ n− 1

Divide l by m to get l = q1m + q0 with 0 ≤ q0 ≤ m − 1 and 0 ≤ l ≤ n − 1. m ≥
√
n ⇒ m2 ≥ n so

0 ≤ m− 1 ≤ m2 − 1 = m2 −m+m− 1 = m(m− 1) +m− 1

March 8th

Pollard-Rho for DLP (given β ∈ G, find l : β = αl in G)

Setup: a group G - cyclic of order n (∃α ∈ G : G = {α, α2, ..., αn} =< α >)

1. Partition G into roughly 3 equal sized subsets s1, s2, s3.

2. Define a function of 3 variables

f(x, a, b) = (βx, a, b+ 1) if x ∈ s1
f(x, a, b) = (x2, 2a, 2b) if x ∈ s2
f(x, a, b) = (αx, a+ 1, b) if x ∈ s3
Begin at (1,0,0)

Particular example: G = Z∗p
s1 = {x : x ≡ 1 mod 3} s1 = {x : x ≡ 0 mod 3} s1 = {x : x ≡ 2 mod 3}

Thus f(1, 0, 0) = (β, 0, 1)

Additional rule: Each triple must satisfy x = αaβb

if (x, a, b) satisfies x = αaβb, then f(x, a, b) = (x1, a1, b1) satisfies x1 = αa1βb1

x ∈ s1 ⇒ (x1, a1, b1) = (Bx, a, b+ 1) and x = αaβb ⇒ x1 = βx = αaβb+1

if x = αaβb and x ∈ s2, then x1 = x2 = α2aβ2b and f(x, a, b) = (x2, 2a, 2b) and same with s3

—

Compute (x1, a1, b1)(x2, a2, b2), ..., (xk, ak, bk) and (x2, a2, b2)(x4, a4, b4), ..., (x2k, a2k, b2k)

Check to see if xk = x2k, then αa2kβb2k = αakβbk .

Let β = αl (l is the unknown DL of β) and so αa2kαlb2k = αakαlbk . Therefore αa2k+lb2k = αak+lbk ⇒
αa2k−ak+l(b2k−bk) = 1

10



If αr = 1, then ordα|r. Therefore a2k − ak + l(b2k − bk) ≡ 0 mod n, where n = ord α

If GCD(b2k − bk, n) = 1, then l ≡ (b2k − bk)−1(ak − a2k) mod n

The Birthday paradox

Let Pk = Prob(no two out of k share a birthday)

P2 = 364
365 , P3 = 364

365
363
365 , ...

Pr(at least on birthday match) = 1−
k−1∏
i−1

(1− i
365 )

Plotted, point of inflection is at 23

March 18th

The discrete log problem (DLP): Given a group G (multiplicative for now) and α ∈ G;β ∈ G satisfies
β ∈< α >:= {αk|k ∈ Z}

Since β ∈< α >, there exists l such that β = αl. DLP: find l : log β

Specialize to Z∗p, which has a primitive element α whos order = p - 1 and so if αl ≡ β mod p, then
l ∈ {2, ..., p− 2}

The Index Calculus - fast attack on discrete logs

But first: Factoring by combining congruences.

Begins with Fermat’s observation:

n = x2 − y2 = (x− y)(x+ y), find x and y such that x2 − y2 = n, with n = (x− y)(x+ y) with x± y 6= 1 or
n.

Guess?: suffices to find x and y: x2 ≡ y2 mod n [x2 − y2 = n ∗ k] but x 6≡ ±y mod n then gcd(x− y, n) is
a proper factor of n.

March 20th

Factoring using squares (see handout)

March 22nd

The Index Calculus

Index calculus for discrete logs in Z∗p
Given α, β ∈ Z∗p where α is a primitive element and there exists an integer l where (1 ≤ l ≤ p− 1) such that

β ≡ αl mod p. Find l.

Two phases:

1. Pre-computation: Pick a set B = {p1, p2, ..., pB} of small primes. Let C ∼ |B| + 10 = B + 10. Find
about C congruences mod p, each of the form αxj ≡ pe1,j1 p

e2,j
2 ...p

eB,j

B mod p where ei is an integer ≥ 0.

Lemma: If l1 = log β1 and l2 = log β2, then log(β1β2) ≡ l1 + l2 mod p− 1.

Proof: Let l = log β1β2. Then αl = β1β2 ≡ αl1αl2 ≡ αl1l2 mod p⇒ l ≡ l1 + l2 mod p− 1

Each of these C congruences can be written as xj = e1,jp1 + e2,jp2 + ...+ eB,jpB mod p− 1

11



Try to solve the system of congruences x1 ≡ e1,1p1 + ...eB,1pB mod p−1 ... xC ≡ e1,Cp1 + ...+ eb,CpB
mod p− 1

This yields {log p1, log p2, ..., log pB}

2. Computation phase: pick random values of s ∈ {1, ..., p− 1}

Compute γ ≡ βαs mod p and hope that you can factor γ over B

If it works for some s for which log(βαs) = r1 log p1+...+rB log pB mod p−1, you have log β+s logα ≡
r1 log p1 + ...+ rB log pB mod p− 1

⇒ log β =
B∑
i=1

r1 log pi − s mod p− 1.

log β = l means β = αl. Therefore logα = l means α1 = αl.

A tiny but useful example: p = 131, α = 2. Find log 37, that is the value of l such that 37 ≡ 2l

mod 131.

let B = {2, 3, 5, 7}. log n = log2 n mod p

log 2 = 1 because we know 21 = 2.

28 ≡ 53 mod p, 212 ≡ 5 ∗ 7, 214 ≡ 32, 234≡3 ∗ 52

Thus 1 = log 2 mod 130.

8 ≡ 3 log 5

12 ≡ log 5 + log 7

14 ≡ 2 log 3(130)⇒ 7 = log 3 mod 65

34 = log3 +2 log 5 mod 130

Thus: log 5 ≡ 46, log 7 ≡ 96, log 3 ≡ 72 mod 130
0 3 0 8
0 1 1 12
2 0 0 14
1 2 0 34

 mod 130

2 log 3 ≡ 14( mod 130) ⇒ log 3 ≡ 7 mod 130
GCD(130,2) . Therefore log 3 ≡ 7 mod 65 so log 3 ≡ 7 or log 3 ≡

7 + 65 mod 130

Try factoring 37 ∗ 2r over {2, 3, 5, 7} mod 130.

Turns out, 37 ∗ 243 ≡ 3 ∗ 5 ∗ 7 mod 131

log 37 + 43 ≡ log 3 + log 5 + log 7 mod 130

Therefore log 37 ≡ 72 + 46 + 96− 43 mod 130 ≡ 41 mod 130.

Sure enough, 241 ≡ 37 mod 131.

March 25th

Elliptic Curves - the set of all solutions (x, y) to the equation y2 = x3 + ax + b, where x3 + ax + b has no
multiple (repeated) roots.

Fact: x3 + ax+ b has no multiple roots if and only if ∆ ≡ −4a3 − 27b2 6= 0

Suppose f(x) = (x − r)g(x), using the product rule, f ′(x) = g(x) + (x − r)g′(x). Therefore r is a root of
f ′(x) if and only if r is a root of g(x). Thus f(x) = (x− r)2 ∗ h(x).

In how many points does a line (y = mx+ k)intersect y2 = x3 + ax+ b? 3

{x = r} meets {y2 = x3 + ax+ b} in two points: x = r, y2 = r2 + ar + b

Let l be the line y = mx+k. How many points of intersection are there between l and the elliptic curve?

12



Substitution of y = mx+k yeilds m2x2 + 2mkx+k2 = x3 +ax+ b. This becomes x3−m2x2 + (a−2mk)x+
b− k2 = 0

Let a = (x1, y1) and b = (x2, y2) be on the intersection of the curve.

1. y1 = mx1 + k, y2 = mx2 + k ⇒ m = y2−y1
x2−x1

(slope)

Using the factor theorem, we have that if r1, r2, r3 are the roots of x3 −m2x2 + (a − 2mk)x + b − k2 = 0,
then x3−m2x2 + ... = (x− r1)(x− r2)(x− r3) = (x−x1)(x−x2)(x− r3)⇒ x3−m2x2 + ... = x3 +x2(−x1−
x2 − r3) + ...

Thus −m2 = −x1 − x2 − r3. Therefore if (x1, y1) and (x2, y2) are on the line y = mx + k intersected with
y2 = x3 + ax + b, the third intersection (r3) satisfies m2 = x1 + x2 + r3, that is r3 = m2 − x1 − x2 (which
gives us the x coordinate).

An example: The curve is y2 = x3−2x+5. a = (1, 2), b = (2,−3). The slope is therefore m = −5. The third
root is therefore r3 = m2−x1−x2 = 22. For (r3, s3) is on the curve, then s3 satisfies s23 = 223− 2 ∗ 22 + 5 =
10648− 44 + 5 = 10609 = (±103)2. Therefore s3 = 103 or −103. Thus (r3, s3) = (22,−103).

Def. Given A(x1, y1) and B(x2, y2) on the curve, let R(r3, x3) be the third point of intersection and define
x3 = r3, y3 = −s3, then A+B := (x3, y3).

March 29th

Discrete Log Problem

Def. Let p > 2 be a prime and get GCD(n,p) = 1. Then (np ) = 1 if x2 ≡ n mod p has a solution and if −1

if x2 ≡ n mod p has no solution. Also, if p|n, set (np ) = 0

April 1st

Diffie-Helman Key Agreement

Public information: a large prime p, a generator (primitive element) γ of Z∗p
Private information:

Alice: a random integer a ∈ {2, ..., p− 2}

Bob: a random integer b ∈ {2, ..., p− 2}

Alice computes A ≡ γa mod p offline and Bob computes B ≡ γb mod p offline.

Alice sends A to Bob who sends B to Alice.

Alice computes Ba mod p and Bob computes Ab mod p

Since Ba ≡ (γb)a ≡ γba ≡ γab ≡ (γa)b ≡ Ab mod p

Thus Ba is the shared secret

Ex. p = 27001, γ = 101. Alice picks a = 21768, computes A = γa ≡ 7580 mod p. Bob picks b = 9898,
computes B = γb ≡ 22181 mod p

Alice computes Ba ≡ 10141 mod p. Bob does the same thing and reaches the same number. Thus the
secret key S = 10141.

An attack on the D-H: Eve in the middle

Eve knows p and γ. Eve picks some random z ∈ {2, ..., p− 2} and intercepts γa and γb. She then computes
γz and sends it to both of them. Eve then computes (γa)z and Alice computes (γz)a thinking its (γb)a.
Same thing with Bob.

Thus (γa)z = (γz)a = Sa, (γ
b)z = (γz)b = Sb

13



Alice ← Sa → Eve ← Sb → Bob

Elliptic Curve DH

Public Info: a large prime p and a different prime q, an elliptic curve E over Zp such that |E(Zp)| = q, and
a point p ∈ E of order q.

Private Info: Alice chooses a random a ∈ {2, ..., p− 2} and computes the point A = a ∗ p on E and sends A
to Bob. Bob picks b ∈ {2, ..., p− 2} and sends B = b ∗ p to Alice.

Alice: a ∗B = a ∗ (b ∗ p) = a ∗ b ∗ p = b ∗ a ∗ p = b ∗ (a ∗ p) = b ∗A

April 3rd

Digital Signatures

Desired properties: uniquely identifiable, verifiable, unforgeable, tied to document, timestamp, sender cannot
repudiate

RSA signature scheme

Setup: n = pq where p,q prime, e and d encryption and decryption exponent.

Alice sends message (m) to Bob.

Alice establishes her RSA system with nA, her public mod and eA, dA, her encryption and decryption
exponents.

Alice sends y ≡ mdA mod nA (the signature) and m (the message)

The signature is (m, y).

Bob computes s ≡ yeA mod nA.

s ≡ m mod nA, verification is ok. s 6≡ m mod nA, verification is not ok.

Note: say s ≡ yeA ≡ (mdA)eA ≡ mdAeA ≡ m mod nA. dAeA ≡ 1 mod nA, φ(n)|de ⇒ mde ≡ m
mod n

El Gamal:

Public parameters: large prime p, primitive element α ∈ Z∗p , β ≡ αa mod p

Private parameters: an exponent a ∈ {2, ..., p− 2}

Alice sends a pair (y1, y2) to Bob.

Alice picks k ∈ {2, ..., p− 2}, sends y1 ≡ αk mod p and y2 ≡ m ∗ βk mod p

GCD(k, p− 1) = 1 (relatively prime)

Bob computes y2(y−11 )a mod p ≡ m ∗ βk ∗ (αk)−a ≡ m(αak ∗ α−ak) mod p ≡ m mod p

El Gamal is slow and complicated!

El Gamal signature scheme:

Alice computes γ ≡ αk mod p (γ = y1) and δ ≡ (m− aγ) ∗ k−1 mod p− 1.

For a signature scheme, GCD(k, p− 1) = 1.

Alice sends (m, γ, δ) to Bob.

Bob computes v1 ≡ βγ ∗ γδ mod p and v2 ≡ αm mod p.

Verification is ok if and only if v1 ≡ v2 mod p

Want αm ≡ βγγδ mod p. Leave γ as in the exponent. Therefore αm ≡ αaγγδ mod p ≡ αaγαk∗δ mod p ≡
αaγ+kδ mod p thus α primitive where the previous holds if and only if m ≡ aγ + kδ mod p− 1.
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April 5th

ElGamal in Z∗p, p a large prime

a is for long-term use, k is short-term (session key)

Example. p = 467, α = 2, a = 127, β = 2127 ≡ 132 mod p

Alice signs m = 100, using k = 213

Then k−1 ≡ 431 mod p

Alice calculates γ = 2213 ≡ 29 mod p and δ = (100− 127 ∗ 29)431 mod p− 1 ≡ 51

Thus signature is (100,29,51)

v2 = 2100 ≡ 189 mod p and v1 = 13229 ∗ 2951 mod p ≡ 189 mod p

Hash function: a mapping h : S → T where S is a set of strings of arbitrary length and T the set of all
strings of some fixed length

for DSA (digital signature algorithm), T = 160 bit strings

Public parameters: p is an L-bit prime, 512 ≤ L ≤ 1024, q is a 160-bit prime such that q|p − 1, g is a
primitive element mod p (ordp(g) = p − 1), h is a hashing function mapping arbitrary strings into 160-bit

strings, α ≡ g
p−1
2 mod p

Note g has order p− 1 so α ≡ g
p−1
2 mod p has order q − αq ≡ 1 mod p. where β ≡ αa mod p (a is Alice’s

private info)

To sign m, Alice picks k ∈ {2, ..., q − 2}

Alice computes γ ≡ (γk mod p) mod q. δ ≡ (h(m) + a(γ))k−1 mod q

Alice sends (m, γ, δ)

a is a long-term private key, k is a short message key

Bob computes e1 ≡ h(m)δ−1 mod q and e2 ≡ γδ−1 mod q

Verification is ok if and only if (αe1βe2 mod p) mod q = γ

April 8th

Secret splitting - dealer wants to split a secret value M between A and B

D picks a random positive integer, gives r to Alice, M-r to Bob.

Pick n > any potential msg. D picks a random integer r mod n. Gives r to Alice (r mod n) and M-r to Bob
(M-r mod n)

Add C to this, give r to A, s to B, M-(r+s) to C

Def. Let 0 < t ≤ w, positive integers

A (t, w) threshold scheme is a way to share a message value M among w participants such that

1. any t or more participants can reconstruct the message

2. but no set of ≤ t− 1 participants can do so

Let p be a prime ≥ w+ 1. Dealer constructs a polynomial f(x) with coefficients in Zp of degree ≤ t− 1. say
f(x) = a0 + a1x+ ...+ at−1x

t−1.

The dealer assigns player i the share (xi, yi) where y1 ≡ f(x1) mod p. The secret is a0.

Ex. p = 17, t = 3, w = 5, P1, P3, P5 are collaborating.

P1 = (1, 8), P3 = (3, 10), P5 = (5, 11) mod 17.

(1) a0 + a1 + a2 ≡ 8 mod 17
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(3) a0 + 3a1 + 9a2 ≡ 10 mod 17

(5) a0 + 5a1 + 25a2 ≡ 11 mod 17

Solve the system to get a1 ≡ 10, a2 ≡ 2, a0 ≡ 13 mod 17

The polynomial f(x) has a very nice expression as a sum of t terms, each term being almost a poly lj(x)
with the feature that lj(xR) = 0 if j 6= k = 1 if j = k. Thus f(x) = l1(x)y1 + l2(x)y2 + ...+ lt(x)yt

April 10th

Threshold schemes

From a population of w participants, devise a scheme such that any t or more participants can determine
the value, but any fewer than t participants cannot.

A polynomial f(x) of degree t− 1 can be determined uniquely given any t distinct points.

Pi gets (xi, yi) we have yi = f(xi) = a0 + aixi + ... + at−1x
t−1
i with a1, ..., at−1 are randomly chosen from

[1..q] where q is a prime “large enough” and arithmetic in mod q and a0 is the secret.

Let V =


1 x1 x21 ... xt−11

1 x2 x22 ... xt−12

. ... ... ... ...
1 xt x2t ... xt−1t


det(V ) =

∑
i<j(xj − xi) 6≡ 0 mod q because xis are all different.

Therefore can solve for ai : V

 a0
...
at−1

 =

y1...
yt


(1) Find polynomials li(x) where 1 ≤ i ≤ t such that li(xj) is 1 if i = j and 0 if i 6= j

Ex. t = 4, i = 3.

g(x) = (x−x1)(x−x2)(x−x4): g(xj) = 0 if xj = x1, x2, x4. g(x3) = (x3−x1)(x3−x2)(x3−x4) 6= 0.

Let l3(x) = (x−x1)(x−x2)(x−x4)
(x3−x1)(x3−x2)(x3−x4)

.

(x1, y1), ..., (x4, y4) given points on curve.

L(x) = y1l1(x) + y2l2(x) + y3l3(x) + y4l4(x) = a0 + a1x+ a2x
2 + a3x

3

L(0) = a0 is the secret.

L(x) =
t∑
i=1

yili(x)

Therefore L(0) = q =
t∑
l=i

yili(0)

li(x) =
∏
j 6=i

x−xj

xi−xj
. Therefore li(0) =

∏
j 6=i,1≤j≤t

−xj

(xi−xj)

Therefore L(0) = a0 =
t∑
i=1

yi
∏
j 6=i

−xj

xi−xj

(4, 25), (−7 − 85), (2, 19). L(0) = a0 =
t∑
i=1

yi
∏
j 6=i

−xj

xi−xj
=

3∑
i=1

yi
∏
j 6=i

−xj

xi−xj
= y1( 7

4+7 )( −24−2 ) + y2( −4−7−4 )(−2−9 ) +

y3( −42−4 )( 7
2+7 ) = 25( 7

11 )(−22 )− 85( −4−11 )(−2−9 ) + 19(−4−2 )( 7
9 ) = 61

9 ???
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April 15th

Variations on Shamir’s Scheme

A scheme with t = 8

Boss has 4 shares, daughter have 2 shares apiece. workers have one share apiece.

# daughters nd ≥ 4 or # workers nw ≥ 8

A scheme with two companies A and B

They agree that it takes 4 members of company A and three members of B to secure the key (Secret)

Company A has a secret SA and B has another secret SB . Secret SA is obtained using a threshold scheme
with t = 4 and SB is obtained using t = 3.

Master secret = SA + SB

A military organization has a general, two colonals, and five recruits.

Only three combinations are allowed:

The general, both colonels, all 5 grunts, or one colonel and 3 grunts.

etc..

Blakley’s Threshold Scheme

For shamir used li =
∏
j 6=i

(x−xj)
xi−xj

, L(x) =
t∑
i=1

yi ∗ li(x), secret is L(0)

t = 3, let x0 = secret. Let p be a large prime

Pick y0, z0 ∈ Random(p)

Let Q = (x0, y0, z0) in 3D mod p

For each player, assign ai, bi ∈ Random(p), 1 ≤ i ≤ t

Set ci = z0 − aix0 − biy0 mod p

Note that z ≡ aix+ biy + ci mod p is a “plane” in 3D over Zp

April 22nd

Zero knowledge proofs

Results: Let p be an odd prime, and let g be a primitive element mod p (ie. z∗p = {g, g2, ..., gp−1})

There exists exactly p−2
2 square mod p, a is a square mod p means X2 ≡ a mod p has a solution and

p 6 |a.

If 1 ≤ i, j ≤ p−1
2 , then i2 ≡ j2 mod p means p|(i− j) ∗ (i+ j). Primality ⇒ p|i− j or p|i+ j. If i 6= j, then

p|i+ j. But 2 ≤ i+ j ≤ p− 1. Therefore p 6 |i+ j. So there exists at least p−1
2 squares mod p.

The squares mod p are exactly the even powers g2, g4, ..., gp−1 mod p. The nonsquares are the odd powers
of g mod p.

If a is a square mod p, then a
p−1
2 ≡ 1 mod p.

If a is a nonsquare mod p, then a
p−1
2 ≡ −1 mod p.

Proof. First, g is a generator (primitive element) mod p so its order is p− 1, which means gp−1 ≡ 1 mod p

and g
p−1
2 6≡ 1 mod p.

(g
p−1
2 )2 ≡ 1 mod p so g

p−1
2 ≡ −1 mod p where p is a prime.

Suppose a is a square
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Ex. p = 19, g = 2 is a primitive element.

Suppose a is a square mod p. Then a ≡ g2k mod p, so that a
p−1
2 ≡ (g2k)

p−1
2 ≡ (gp−1)k ≡ 1 mod p.

Suppose a is a nonsquare mod p. Then a ≡ g2l+1 mod p and so a
p−1
2 = g(2l−1)(

p−1
2 ) ≡ (gp−1)l ∗ g

p−1
2 ≡

g
p−1
2 ≡ −1 mod p.

Euler’s Criteron: If p is an odd prime and (a, p) = 1, then a
p−1
2 ≡ 1 or -1 mod p, according as a is or is not

a square mod p.

Key Lemma: Let p ≡ 3 mod 4. If a is a square mod p, define b := a
p+1
4 mod p. Then b2 ≡ a mod p.

Ex. 7 is a square: a = 7, p = 19, so p+1
4 = 5. b = 75 ∗ b2 = y10, b = 11, b2 = 121 = 7 + b ∗ 19.

Proof: b2 ≡ (a
p+1
4 )2 mod p ≡ a

p+1
2 mod p ≡ a

p−1+2
2 mod p ≡ a

p−1
2 ∗ a mod p ≡ 1 ∗ a ≡ a mod p as

claimed.

Ex. (a zero knowledge proof) Bob finds two large primes p and q such that p ≡ q ≡ 3 mod 4, and construct
n = pq.

Bob tells Alice “I know the factorization of n.”

Alice chooses x at random between 1 and n, sends Bob the number y where y is the least positive residue of
x4 mod n.

(challenge - response - notification)

Bob receives y from Alice, knows y is a square mod n. Since y ≡ x4 ≡ (x2)2 mod n, it is also true that
y ≡ (x2)2 mod p and q ≡ (x2)2 mod q.

Bob computes ±y
p+1
4 mod p and ±y

q+1
4 mod q. These give 4 square roots of y mod pq by the Chinese

Remainder Theorem.

However, only one of these square roots of y is itself a square!

Bob finds the value v mod n that is in fact a perfect square and sends it to Alice.

Alice knows x, and so computes x2 mod n. If x2 ≡ v mod n, verification is achieved.

April 24th

Alice knows only n, Bob knows n = pq, p ≡ q ≡ 3 mod 4

Alice picks x ∈Rand(n), sends y ≡ x4 mod n to Bob.

Bob receives y from Alice, computes a = ±y
p+1
4 mod p. Saw that y

p+1
4 is a sqrt of y mod p if y is a square.

b = ±y
q+1
4 mod q.

Exactly one of hte four systems w ≡ ±a mod p, w ≡ ±b mod q has a solution that is a perfect square mod
pp and mod q and therefore mod n.

Bob sends w to Alice.

Alice computes x2 mod n. If x2 ≡ w mod n, then verification is Ok.

Shamir’s zero knowledge proof protocol (Repeatable protocol)

Bob chooses p ≡ q ≡ 3 mod 4, sends n = pq to Alice.

Picks some integer I that represents some sort of personal ID

Finds a small positive integer c such that v = I||c is a square mod both p and q (and thus n)

Note: Bob can find a square root v mod p and mod q and hence mod n. There exists u such that v ≡ u2

mod n

Bob sends v to Alice.

1. Bob chooses r ∈Random[n], sends Alice two values: x ≡ r2 mod n and y ≡ vx−1 mod n
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2. Alice checks that the product xy ≡ v mod n. Alice has seen v = I||c mod n and x and y.

Alice then picks a random bit b = 0 or 1, sends to Bob.

3. If b = 0, Bob sends r to Alice. If b = 1, Bob sends ur−1 to Alice

4. Alice squares what she receives mod n.

If b = 0, Alice squares r, sees r2 ≡ x mod n

If b = 1, Alice squares (ur−1)2 ≡ vr−2 ≡ vr−1 ≡ y mod n

If b = 0 and answer = x or if b = 1 and answer = y, verification is achieved.

Finding squares

Let p be an odd prime and let GCD(a, p) = 1.

Define the Legendre Symbol (ap ) by (ap ) = 1 if x2 = a mod p has a solution and = −1 if there is no solution.

Thus ( 7
19 ) = 1 because 7 ≡ 64 ≡ 82 mod 19.

(ap ) satisfies some rules:

1. Let GCD(a, p) = GCD(b, p) = 1, then (a
2

p ) = 1

2. If a ≡ b mod p, then (ap ) = ( bp )

3. (abp ) = (ap )( bp )

4. Euler’s criteron: p−1
2 , (ap ) ≡ a

p−1
2 mod p

5. The special cases:

(a) (−1p ) = (−1)
p−1
2 = 1 if p ≡ 1 mod 4 and -1 if p ≡ 3 mod 4

(b) ( 2
p ) = (−1)

p2−1
8 = 1 if p ≡ ±1 mod 8 and -1 if p ≡ ±3 mod 8

(c) If p and q are distinct odd primes, then (pq ) = ( qp )(−1)

April 29th

S-T

Given p a prime, with GCD(a, p) = 1, Find x : x2 ≡ a mod p or show none exists

Compute (ap ). If it is -1, stop., else go

Write p− 1 = 2st, t odd. Find n : (np ) = −1

Initialize x = a
t+1
2 (initial guess), b = at (correction factor), g = nt and ordpg = 2s = g2

s−1

= nt∗2
s−1

=

n
p−1
2 ≡ (np ) ≡ −1 mod p

flag = 1, r = s, while flag != 0, find least m where 0 ≤ m ≤ r − 1 with b2
m ≡ 1 mod p

if m = 1, break and return x. else update x = xnext = x ∗ g2r−m−1

, b = bnext = b ∗ g2r−m

, g = gnext =
g2

r−m

, r = rnext = m

Example: p = 113

( 2
p ) = 1, p− 1 = 167 = 247, s = 4, t− 7.
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