MATH 4176 Notes

Kevin Lee

April 29, 2013

Jan 23rd

Diffie-Hellman Key agreement, AES

Jan 25th

Given $N=(p q)$
$M \rightarrow C=M^{e}(\bmod N)$
$C \rightarrow C^{d} \equiv M^{d e} \equiv M \bmod N$
Euclidean GCD Algorithm + Extended Version
Def. Let $a, b \in \mathbb{Z}$ and let $a \neq 0$: we say $a \mid b$ (a divides b) provided there exists an integer c such that $b=a c$. $a|b \& b| c=a \mid c$
$a|b \& b| a, a= \pm b$
$a \mid b$ and $a \mid c$ and $p, q \in \mathbb{Z} \rightarrow(a \mid p b+q c)$

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}, n \neq 0$. We say a is congruent to $\mathrm{b} \bmod \mathrm{n}(\operatorname{written} a \equiv b(\bmod n)$ provided $a-b$ is divisible by n (ie. $a-b=d * n, d \in \mathbb{Z}$).

Congruence mod n is an equiv relation:
$\forall a, b, c, n \neq 0, a \equiv a \bmod n, a \equiv b \Rightarrow b \equiv a, a \equiv b b \equiv c \Rightarrow a \equiv c \bmod n, a \equiv b c \equiv d \bmod n \Rightarrow a \pm c \equiv b \pm d$ $\bmod n$

Common divisors
Let $a, b \in \mathbb{Z}, d$ is a common divisor of a, b provided $d \mid a$ and $d \mid b$
Def. Let $a, b, \in \mathbb{Z} a, b \neq 0$, then g is a GCD of a and b provided g is a common divisor of a and b and g is the largest such common divisor.

Facts: g is a GCD of a and b if $g \mid a$ and $g \mid b, g>0$, and if d is any common divisor of a and b then $d \mid g$

The GCD algorithm and its extension
Given $a, b \in \mathbb{Z}, b \neq 0$ there exists unique $g, r \in \mathbb{Z}, a=g b+r, 0 \leq r<b$.
If $d \mid a$ and $d \mid b$, then $d \mid a-q b$ so $d \mid r$.
If $d \mid b$ and $d \mid r$, then $d \mid q b+r$ so $d \mid a$.
$a=q b+r, a \leq r<b, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{r})$
$\exists r_{1}: b=q_{1} r+r_{1}, 0 \leq r_{1}<r$
$\exists r_{2}: b=q_{2} r_{1}+r_{2}, 0 \leq r_{2}<r_{1}$
$r>r_{1}>r_{2}$
Last remainder $=\mathrm{GCD}$

Ex. GCD of 118 and 267

Jan 28th

RSA Encryption Algorithm (Rivest, Shamir, Adelman)

How it works: Bob sets up the system. He chooses a large positive integer $N(1024$ bits $)$ where $N=$ $p * q$ and p and q are distinct primes about 512 bits each. He can then computes an integer $\phi(n):=$ $a \in \mathbb{Z} \mid 1 \leq a \leq N, \operatorname{gcd}(a, N)=1$. He chooses two integers e and d such that $e * d=1+k \phi(N)$ for some integer k. He then publishes both N and e (e is te encryption exponent). Bob keeps d, p, q, and $\phi(N)$ private.

Alice wants to send a message to Bob. She digitizes the message and breaks it into blocks, where each block $=$ positive integer $<\mathrm{N}$. Alice sends a block M by encrypting it: namely she computes $C \equiv M^{e}(\bmod N)$ and sends it to Bob. (Recall: $a \equiv b \bmod m$ means $a-b$ is a multiple of m, ie. $a=b+k m$). Bob receives the message and decrypts it by computing $C^{d}=\left(M^{e}\right)^{d} \equiv M^{e d} \bmod N$ and since $e d=1 \bmod \phi(N), M^{e d} \equiv M$ $\bmod N$.
$\phi(p q)=(p-1)(q-1)$, if N can be factored, the system can be broken as $\phi(N)$ can be found. e is normally chosen for ease of computation (sparse, more 0s than 1s).
Euclidean Algorithm for computing $\operatorname{GCD}(a, b)$
Euler-Fermat theorem: let m be a positive integer and let $\operatorname{GCD}(a, m)=1$ and $a^{\phi(m)} \equiv 1 \bmod m$.

Jan 30th

Fast Multiplication/Exponentiation: known as double and add or square and multiply.

19	37
9	74
$-4-$	$-148-$
$-2-$	$-296-$
1	592
$=$	703

Binary representation of $19: 10011=16+2+1$.
Binary reversed, add values under 1s:

1	1	0	0	1
37	74	148	296	592
$19^{*} 37=37+2^{*}\left(37+2^{*} 2^{*} 2^{*} 37\right)$				

Cross out rows with even values on the left, add up remaining values on the right to get the product.
To multiply x by, say, 19: (go from left to right)

1	0	0	1	1
1 x	2 x	4 x	8 x	18 x
1 x			9 x	19 x

To multiply x by, say, 112:

1	1	1	0	0	0	0
	2 x	6 x	14 x	28 x	56 x	112 x
x	3 x	7 x				

To calculate $x^{53}, 53=110101$

1	1	0	1	0	1	
x	x^{2}	x^{6}	x^{12}	x^{26}	x^{52}	Answer
x	x^{3}		x^{13}		x^{53}	Mult

Shift left and add one if the bit is 1 . To find x^{545} takes 9 squaring and 2 multiplications.

Feb 1st

Chinese Remainder Theorem

Let m_{1}, \ldots, m_{n} be pairwise relatively prime positive integers and let q_{1}, \ldots, q_{n} be integers. Then the system of congruences $x \equiv q_{1} \bmod m_{1}, \ldots, q_{n} \bmod m_{n}$ has a solution which is unique $\bmod \left(m_{1}, \ldots, m_{n}\right)$.

Proof: Let $M=m_{1}, \ldots, m_{n}$. For $1 \leq j \leq n_{i}$ let $M_{j}=\frac{M}{m_{j}}$
Claim: If $1 \leq i \leq n$, then \ldots (see book)

Feb 4th

Recall n be a positive integer and let $a \in \mathbb{Z}^{+}$with $\operatorname{gcd}(a, n)=1$ (standard hypothesis)
If $e * d \equiv 1 \bmod (p-1)(q-1)$, then $\left(M^{e}\right)^{d} \equiv M \bmod p q($ based on Euler-Fermat Theorem)
Def. Given the standard hypothesis, the order of $a \bmod n$ written $\operatorname{ord}_{n} a$ is the least possible r such that $a^{r} \equiv 1 \bmod n$ if it exists.

Theorem. Given the standard hypothesis, ord ${ }_{n} a$ does exist.
Proof. Write down powers of $a \bmod n: a, a^{2}, a^{3}, \ldots \bmod n$
Ex. Powers of $3 \bmod 23: 3,9,14,12,13,15,2,6,18,8,1,3,9, \ldots$ repeats! (pigeon hole principle (PHP))
By PHP, after at most $\mathrm{n}+1$ steps, the powers repeat.
Let $i<j$ and let $a^{i} \equiv a^{j} \bmod n$.
Ex. $5^{8} \equiv 5^{38} \bmod 31.5^{8}$ has one inverse $\bmod 31$ so $5^{-8} * 5^{8} \equiv 5^{-8} * 5^{38} \bmod 31,1 \equiv 5^{30} \bmod 31$
Because $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$, it follows that a is invertible mod n (recall the affine cipher). If a^{*} satisfies $a^{*} a \equiv 1$ $\bmod n$, then $\left(a^{*}\right)^{i} a^{i} \equiv\left(a^{*}\right)^{i} a^{j} \bmod n . \therefore 1 \equiv a^{-i} a^{j} \equiv a^{j-i} \bmod n$ and $j-i>0$. Thus r exists and the least such positive number is the order.

Last time - looked at $\operatorname{ord}_{7} a$ for $1 \leq a \leq 6$.

a	1	2	3	4	5	6
$\operatorname{ord}_{7} a$	1	3	6	3	6	2

For all $a, \operatorname{gcd}(a, 7)=1, \operatorname{ord}_{7} a$ is a divisor of 6 .
$\mathrm{n}=8$

a	1	3	5	7
$\mathrm{a}_{8} a$	1	2	2	2

$\mathrm{n}=9$

$\mathrm{n}=9$		1	2	4	5	7
a	8					
$\mathrm{a}_{9} a$	1	6	3	6	3	2

What you notice is that the number of possible values of a 's is related to the order
Def. Let n be a positive integer. Define $\phi(n)=\#$ of positive integers such that $1 \leq a \leq n$ and $\operatorname{gcd}(a, n)=$ 1. $\phi(n)$ is called the Euler-Phi function (EulerPhi[n$]$ in Mathematica).

For p a prime: $\phi(p)=p-1$.
q another prime, $q \neq p . \phi(p q)=p q-q-p+1$; throwing away $(p, 2 p, \ldots,(q-1) p, q p)$ and $(q, 2 q, \ldots,(p-1) q, p q)$ but leaving one $p q . \phi(p q)=p q-q-p+1$ then factors into $\phi(p q)=(p-1)(q-1)$.
$\phi\left(p^{3}\right)=p^{3}-p^{2}=p^{2}(p-1)=p^{3}\left(1-\frac{1}{p}\right) ;$ throwing away $\left(p, 2 p, \ldots,\left(p^{2}-1\right) p, p^{2} p\right)$

Feb 6th

Let $\operatorname{gcd}(a, n)=1 ; n>1$ such that $a^{k} \equiv 1 \bmod n$
Given such n and a, ord ${ }_{n} a$ exists (proof by PHP, any string of $\mathrm{n}+1$ consecutive powers of a mod n must have a repeated number. If $a^{i} \equiv a^{j} \bmod n$ with $i<j$, then $a^{j-i} \equiv a^{i}\left(a^{j}\right)^{-1}$ with $j-i>0$.

We looked at powers of $3 \bmod$ 23:
Fermat's Little Theorem: Let p be a prime and get $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1 \bmod p$.

Feb 8th

Proof: if $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ and $a^{k} \equiv 1 \bmod n$ then $\operatorname{ord}_{n} a$ divides k.
Suppose $a^{k} \equiv 1 \bmod n$. Let $k=q * \operatorname{ord}_{n}(a)+r$ with $0 \leq r<\operatorname{ord}_{n}(a)$
Show $r=0$ by def and by assumption, $1 \equiv a^{k} \equiv a^{q * o r d_{n}(a)+r} \equiv\left(a^{\text {ord }_{n}(a)}\right)^{q} * a^{r} \bmod n \equiv a^{r} \bmod n$.
Thus $a^{r} \equiv 1 \bmod n, 0 \leq r<\operatorname{ord}_{n}(a)$ and so $r=0 \therefore k$ is a multiple of $\operatorname{ord}_{n}(a)$.
Cor. Since $a^{\phi(n)} \equiv 1 \bmod n$ by Euler-Fermat theorem, it follows that $\operatorname{ord}_{n}(a) \mid \phi(n)$.
Def: primitive element: let p be a prime. A primitive element $\bmod p$ is an integer α such that α has order $p-1 \bmod p$.

Assumption: every prime has a primitive element.
Given ϕ and α, a primitive element $\bmod \mathrm{p}$. Solve $\alpha^{k} \equiv \beta \bmod p$ where β is given.
The mapping of \mathbb{Z}_{p}^{*} to \mathbb{Z}_{p}^{*} by $k \rightarrow \alpha^{k} \bmod p$ is $1-1$ and onto.
Nice theorem (5.8): Let p be a prime >2 and let $\alpha \in \mathbb{Z}_{p}^{*}$. Then α is a primitive element $\bmod p$ if and only if for each prime divisor q of $p-1, \alpha^{q} \not \equiv 1 \bmod p$.

Proof: Let α be a primitive and let q be a divisor of $p-1$. α primitive $\Rightarrow \operatorname{ord}_{p}(\alpha)=p-1$. Since $q \mid p-1$ and q is a prime, we have that $1<q \leq p-1$ and $1 \leq \frac{p-1}{q}<p-q$. By def of $\operatorname{ord}_{p}(\alpha), \alpha^{\frac{p-1}{q}} \not \equiv 1 \bmod p \cdot\left[\frac{p-1}{q} \geq 1\right.$ and $\left.\frac{p-1}{q}<\operatorname{ord}_{p}(\alpha)\right]$

Suppose α is not primitive. Let $\operatorname{ord}_{p}(\alpha)=i<p-1.1 \leq i<p-1 ; \frac{p-1}{i}$ is an integer ≥ 2.
Let q be a prime divisor of $\frac{p-1}{i}$. Then q is a prime divisor of $p-1$. So $\frac{p-1}{i}=q d$ for some integer d. So $\frac{p-1}{q}=d i$. Then $\alpha^{\frac{p-1}{q}}=\alpha^{d i} \equiv\left(\alpha^{i}\right)^{d}=\left(\alpha^{\text {ord }_{p} \alpha}\right)^{d} \equiv 1 \bmod p$.

Feb 11th

$p=2 q+1$ where q is a odd prime. p is called a SophieGermain prime. Given $\alpha \not \equiv \pm 1 \bmod p$. Prove that α is a primitive element if and only if $a^{q} \equiv-1 \bmod p$.

Use the Nice theorem (5.8). Let $p-1=q_{1}, \ldots, q_{r}$. Then α is a primitive element $\bmod p$ if and only if $\left\{\alpha^{\frac{p-1}{q_{1}}}, \ldots, \alpha^{\frac{p-1}{q_{r}}}\right\}$ contains no occurrences of $1(\bmod p)$. We see that $p-1=2 q$, so the list of prime divisors of $p-1$ is $\{2, q\}$. Consider $\alpha^{\frac{p-1}{q}} \bmod p$. By def, $\frac{p-1}{q}=2$, so we test $\alpha^{2} \bmod p$. Is $\alpha^{2} \equiv 1 \bmod p$? No. For p is a prime and if $\alpha^{2} \equiv 1 \bmod p$, then $(\alpha-1)(\alpha+1) \equiv 0 \bmod p \Rightarrow p|(\alpha-1)(\alpha+1) \Rightarrow p|(\alpha-1)$ or $p \mid(\alpha+1) \Rightarrow \alpha \equiv 1$ or $-1 \bmod p$. Therefore by the N.T., α is a primitive if and only if $\alpha^{\frac{p-1}{2}}=\alpha^{q} \not \equiv 1$ $\bmod p$. But $\alpha^{\frac{p-1}{2}}=\alpha^{p-1} \equiv 1 \bmod p$. Therefore $\left(a^{q}\right)^{2} \equiv 1 \bmod p \Rightarrow \alpha^{q} \equiv \pm 1 \bmod p$. Therefore α is a prime if and only if $\alpha^{q} \equiv-1 \bmod p$.
$n=p q, \phi(n)$ is known, $\phi(p q)=(p-1)(q-1)=p q-p-q+1=n-p-q+1 . p+q=n+1-\phi(n)$. $\Rightarrow p^{2}+(\phi(n)-n-1) p+n=0$

RSA: Given p and q large primes and exponents e and d, to encrypt: $M \rightarrow M^{e} \bmod n$. To decrypt: $C \rightarrow C^{d} \equiv 1 \bmod n$.

The idea is that p and q are private, $n=p q$ is public, d is private, e is public. Knowing p and q, one cna compute $\phi(n)$, from ehich one can compute d, where $e d \equiv 1 \bmod \phi(n)$. Thus $C^{d} \equiv\left(M^{e}\right)^{d} \equiv M^{e d} \equiv$ $M^{k * \phi(n)+1} \equiv\left(M^{\phi(n)}\right)^{k} * M \bmod n$. By EulerFermat, $\equiv 1^{k} M=M \bmod n$.

Issues: how to choose p, q, e.

The Monte Carlo algorithm - A yes-biased M.C algorithm is a randomized based algorithm for a decision problem such that a YES answer is correct and a NO answer may be correct.

The Las Vegas algorithm - a random algorithm for a decision problem which may not give an answer. But if it does, it is correct.
Tools for testing for primility

- The decision problem is called COMP(OSITE)
- Algorithms are yes-biased M.C

A yes-biased M.C has an error problem of $\epsilon \mathrm{y}$, in an instance in which the answer is "yes", the algorithm gives the (wrong) answer NO with probability $\leq \epsilon$.

FLT If n is a prime and $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$, then $a^{n-1} \equiv 1 \bmod n$.
Contrapositive: $a^{n-1} \not \equiv \bmod n \Rightarrow \mathrm{n}$ composite.

Feb 13

$a^{p-1} \equiv 1 \bmod p$ for all $a,(a, p)=1$ where p is a prime
If $p-1=q_{1}, \ldots, q_{k}$ and a satisfies $a^{\frac{p-1}{q_{1}}} \not \equiv 1 \bmod p$ for $1 \leq i \leq k$, then a is a prime.
$p=2 q+1, p-1=2 q$. Want a to satisfy $a^{\frac{p-1}{2}} \not \equiv 1$ and $a^{\frac{p-1}{q}} \not \equiv 1 \bmod p . a^{\frac{p-1}{2}} \equiv a^{q} ?$ and $a^{\frac{p-1}{q}} \equiv a^{2}$?
$a \not \equiv 1 \bmod p$ so $a^{2} \not \equiv 1 \bmod p$.
If a is primitive, $a^{q} \not \equiv 1 \bmod p . a^{q} \equiv a^{\frac{p-1}{2}} \bmod p$ so $\left(a^{q}\right)^{2} \equiv a^{p-1} \equiv 1 \bmod p$. Therefore $a^{q} \equiv 1$ or -1 $\bmod p$.
$\phi(n)=p q-(p+q)+1$, so $p+q=p q+1-\phi(n) . q=n / p$ so $p+\frac{n}{p}=n+1-\phi(n) \Rightarrow p^{2}+n=(n+1-\phi(n)) p$.
FLT: If n is prime and $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$, then $a^{n-1} \equiv 1 \bmod n$.
Contrapositive: If $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ and $a^{n-1} \not \equiv 1 \bmod n$, then n is a composite.
Compositeness Test: yes-biased Monte-Carlo. Is n a composite?
Randomly pick a such that $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$. Compute $a^{n-1}-1 \bmod n$. If $a^{n-1}-1 \not \equiv 0 \bmod n$ return yes, else return no.

Pseudo-primes (impostor:) $a=2, n=341=11 * 31$. However, $2^{10} \equiv 1 \bmod 11$ by FLT for $11(*)$. Also, $2^{5}=32 \equiv 1 \bmod 31$. Therefore $2^{10} \equiv 1 \bmod 31$. (**)

The system $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ of congruences has a unique solution $\bmod 341$. Thus $2^{10} \equiv 1 \bmod 341$ therefore $1 \equiv\left(2^{10}\right)^{34} \equiv 2^{340} \bmod 341!!$

Def. Let n be an integer >1, and let $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$. Then we call a a pseudo prime to base b if b is an integer that satisfies $b^{n-1} \equiv 1 \bmod n$ and n is a composite. [n is a pseudo prime to base b]
So 341 is a pseudo prime to base 2 . What about $b=3 ? 3^{5} \equiv 3^{10} \equiv 1 \bmod 11$ (FLT). $3^{10} \equiv 25 \bmod 31$. Now $3^{30} \equiv 1 \bmod 31(\mathrm{FLT})$. Thus $\left(3^{10}\right)^{33} \equiv 1^{33} \equiv 1 \bmod 11 \equiv 1 \bmod 31$. Then $3^{330} \equiv 1 \bmod 341$. Therefore $3^{330} \equiv 3^{330} * 3^{10} \equiv 25 \bmod 341$. Therefore 341 is a composite.

However! There are universal pseudo primes that fail all tests of compositeness. There exists numbers n for which n is composite and yet for every b with $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1, b^{n-1} \equiv 1 \bmod n \cdot n$ is a pseudo prime (x) if $\operatorname{gcd}(\mathrm{x}, \mathrm{n})=1$ and $x^{n-1} \equiv 1 \bmod n$.
ie. $x^{n-1}-1 \equiv 0 \bmod n$.
Suppose $x^{n-1}-1=f_{1}(x) f_{2}(x) \ldots f_{r}(x) \bmod n$
If n is a prime and $n \mid x^{n-1}-1$, then $n \mid f_{1}(x)$ or $n \mid f_{2}(x)$ or \ldots or $n \mid f_{r}(x)$.
$2^{340}-1=\left(2^{170}+1\right)\left(2^{170}-1\right)=\left(2^{170}\right)\left(2^{85}+1\right)\left(2^{85}-1\right) \equiv 0 \bmod 341$. But $2^{170} \equiv 2 \bmod 341 ; 2^{85}+1 \equiv 2$ $\bmod 341 ; 2^{85}-1 \equiv 33 \bmod 341$. Correct factorization next time.
Example: $n=561=3 * 11 * 17 . \operatorname{gcd}(\mathrm{b}, \mathrm{n})=1 \Rightarrow b^{560} \equiv 1 \bmod 561$.

Feb 15th

More about primality and compositeness
n is a pseudo prime to base $\mathrm{b}[\operatorname{psp}(\mathrm{b})]$, if $b^{n-1} \equiv 1 \bmod n$ and n is a composite, FLT: if $\exists b: b^{n-1} \not \equiv 1$ $\bmod n$ and $(\mathrm{b}, \mathrm{n})=1$, then n is a composite.
$2^{340} \equiv 1 \bmod 341$ and $341=11^{*} 31$
$3^{340} \not \equiv 1 \bmod 341 \Rightarrow 341$ composite.
$b^{n-1} \equiv 1 \bmod n$ means $b^{n-1}-1$ is divisible by n.
See: write $n-1=2^{k} m$, with m odd. Then $a^{n-1}-1=a^{2^{k} * m}-1=\left(a^{2^{k-1} m}+1\right)\left(a^{2^{k-2} m}+1\right) \ldots\left(a^{2 m}+\right.$ 1) $\left(a^{m}+1\right)\left(a^{m}-1\right)$

If n is a prime, and $n \mid a^{n-1}$, then n must divide one of the factors over the RHS.
Yes Test for decision problem: n is composite: Factor $n-1=2^{k} m$, with k is a positive integer and m odd. Randomly choose a with $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$. Set $b:=a^{m}$. If $b \equiv 1 \bmod n$, return (" n is prime') [No, n is not a composite]. else for $i=1$ to $k-1$, do the following:
If $b \equiv-1 \bmod n$ return (' n is prime'); else $b:=b^{2}$ endif. and for ; return (' n is composite')
Miller-Rabin Test (above)
Thm. M-R is a yes-biased test for compositeness.
Proof 1: Suppose the M-R test returns yes. This is impossible if n is a prime. (work backwards in the algorithm)

Fact: If n is prime and $x^{2} \equiv 1 \bmod n$, then $x \equiv 1$ or $x \equiv-1 \bmod n$.
Suppose n is a prime, let a be an integer rel. prime to n. Then $a^{n-1}=a^{2^{k} m} \equiv 1 \bmod n \Rightarrow\left(a^{2^{k-1} m}\right)^{2} \equiv 1$ $\bmod n$. But $a^{2^{k-1} m} \not \equiv-1($ else \rightarrow NO $)$. Therefore $a^{2^{k-1} m} \equiv 1 \bmod n$. Thus $1 \equiv\left(a^{2^{k-2} m}\right)^{2} \bmod n$. No stop so $a^{2^{k-2} m} \equiv 1 \bmod n$ Continue in this way to $\left(a^{m}\right)^{2} \equiv 1 \bmod n$. Therefore $a^{m} \equiv \pm 1 \bmod n$ which would have returned No.

Def. If $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1$, n failes the $\mathrm{M}-\mathrm{R}$ test (ie. test yields prime) and yet n is composite, we call n a string pseudo prime to base b $" \operatorname{spsp}(\mathrm{~b})$ ".

Ex. $M:=2^{n}-1=24 * 89$ If $2^{n}-1$ is prime, then n is prime.

Feb 18th

$11213 * 104369=11703 \ldots\left(11212^{*} 104368=11702 \ldots\right)$ note that the first few digits are identical. p, q $10^{50}, p * q=10^{100}, \phi(p q)=p q-p-q+1=n-(p+q-1)$ thus we know that there is a finite number of solutions. Find a factor of $d e-1$ that has the same length as N .

The integer factoring problem.
Classes of factoring methods

1. BFI: brute force and ignorance
2. Birthday match techniques
3. Using FLT and generalizations
4. Combination of congruences: If $p \mid(x-y)(x+y)$ then $p \mid x-y$ or $p \mid x+y$. The idea is to find two squares X^{2} and Y^{2} such that $X^{2} \equiv Y^{2} \bmod N$ but $X \not \equiv Y \bmod N$. (Fermat)

Pollard's p-1 algorithm 1974:

1. Let α be an integer $\neq \pm 1$ and $\operatorname{GCD}(\alpha, N)=1$
2. Raise α to a very large power $B \bmod N$.

If p is a prime divisor of $\mathrm{N}(\operatorname{GCD}(\alpha, p)=1)$ and $p-1 \mid B$, then $\alpha^{B} \equiv 1 \bmod p$. Therefore $\alpha^{B}-1 \equiv 0 \bmod p$. Then $\operatorname{GCD}\left(\alpha^{B}-1, N\right)$ is a multiple of p.

What has to happen for this to work? $N=488533, \alpha=2, B=20!; B=2 * 3 * \ldots * 19 * 20$ so happens that $456=2^{3} * 3 * 19 \mid 20$! and $457 * 1069=N$.

Feb 20th

Pollard p-1: Let N be a large composite number. If N has a prime factor p such that all prime power factors of $p-1$ are $\leq M$, where M is suitably chosen then the number $\alpha^{M}-1$ for $\alpha \neq \pm 1, \operatorname{GCD}(\alpha, N)=1$ will be divisible by p.

If $\operatorname{GCD}(\alpha, N)=1$, then $\operatorname{GCD}(\alpha, p)=1$ for each prime divisor p of N. If $p-1 \mid M$, then

1. $\alpha^{p-1} \equiv 1 \bmod p($ by FLT $)$
2. $\alpha^{M} \equiv 1 \bmod p\left(\operatorname{ord}_{p} \alpha \mid p-1\right.$ and $\left.p-1 \mid M\right)$
3. $\therefore p \mid \alpha^{M}-1$
4. $\therefore p \mid \mathrm{GCD}\left(\alpha^{M}-1, N\right)$
$p-1$ algorithm: pick some value of B, an integer that's "big enough but not too big". [B ! is going to be over value of M]
Find $\alpha^{B!} \bmod N$ ans $=\alpha$ for $[i=0 ; i \leq B ; i++]$ ans $:=\operatorname{ans}^{i} \bmod \mathrm{Ng}=\mathrm{GCD}[$ ans- $1, \mathrm{~N}]$ if $\mathrm{g} \neq 1$ or N , stop. else keep going

PollardRho: Let $N=p q$. Iterate a random function f on $\mathbb{Z}_{N} \rightarrow \mathbb{Z}_{N}$.
Ex. $f(x)=x^{2}+1 \bmod N, f^{\prime}(x)=f(x), f^{2}(x)=f \circ f(x), f^{n+1}(x)=f \circ f^{n}(x) \ldots$
To factor $N=p q$, generate two sequences: $x_{0}=1, x_{1}=f\left(x_{0}\right)=z ; y_{1}=f\left(f\left(x_{2}\right)\right)=5$

Feb 22nd

We know that if n is a prime >2 and $x \in \mathbb{Z}$, then $x^{2} \equiv 1 \bmod n \Rightarrow x \equiv \pm 1 \bmod n$.
Note that if $a^{\frac{n-1}{2}} \bmod n$, where $\operatorname{gcd}(a, n)=1$, then $y^{2} \equiv\left(a^{\frac{n-1}{2}}\right)^{2} \equiv a^{n-1} \equiv 1 \bmod n($ by FLT $)$
Therefore if $\operatorname{gcd}(a, n)=1$ and n is an odd prime, then $a^{\frac{n-1}{2}} \equiv \pm 1 \bmod n$.
Consequences: Euler's criterion: If n is an odd prime and $\operatorname{gcd}(a, n)=1$, then $a^{\frac{n-1}{2}} \equiv 1$ or $-1 \bmod n$.
Def. If p is an odd prime, and $\operatorname{gcd}(a, p)=1$, if there exists a solution x such that $x^{2} \equiv a \bmod p$ has a solution, then we say that x is a quadratic residue $(\mathrm{QR}) \bmod p$ and x is a quadratic non-residue (QNR) otherwise.

The squares mod $13:$ Squares: $1,4,9,16 \equiv 3,25 \equiv 12,36 \equiv 10$, Non squares: $2,5,6,7,8,11$

The powers of $2 \bmod 13$:

k	1	2	3	4	5	6	7	8	9	10	11	12
$2^{k} \bmod 13$	2	4	8	3	6	12	11	9	5	10	7	1
nonsq:	2		8		6		11		5		7	
	2		2^{3}		2^{5}		2^{7}		2^{9}		2^{11}	
sq:		4		3		12		9		10		1
		2^{2}		2^{4}		2^{6}		2^{8}		2^{10}		2^{12}

Euler's Criteron Reinvented: Let p be an odd prime. Then a is a $\mathrm{QR} \bmod p$ if and only if $a^{\frac{p-1}{2}} \equiv 1$ $\bmod p$.

Proof. If a is a QR mod p , then there exists b such that $a \equiv b^{2} \bmod p$. Thus $a^{\frac{p-1}{2}}=\left(b^{2}\right)^{\frac{p-1}{2}} \equiv b^{p-1} \equiv 1$ $\bmod p($ by FLT $)$

Suppose $a^{\frac{p-1}{2}} \equiv 1 \bmod p$. Let g be a primitive element \bmod p. That is $\left\{g, g^{2}, \ldots, g^{p-1}\right\} \equiv\{1,2, \ldots, p-1\}$ $\bmod p$ in some order. Therefore we may write $a=g^{k}$ for some integer k. Then $1 \equiv a^{\frac{p-1}{2}} \equiv g^{\frac{k(p-1)}{2}} \bmod p$. Thus $p-1 \left\lvert\, \frac{k(p-1)}{2}\right.$, so $\frac{k}{2}$ is an integer. $\frac{k}{2}=l, k=2 l$, and so $a=g^{2 l}=\left(g^{l}\right)^{2}$ is a QR mod p.
Some notation: Let p be an odd prime and let $a \in \mathbb{Z}$. Define the Legendre symbol $\left(\frac{a}{p}\right)$ "a over p" by $\left(\frac{a}{p}\right)=\{$ 0 if $p \mid a, 1$ if $\operatorname{gcd}(a, p)=1$ and $x^{2} \equiv a \bmod p$ has a solution $[a$ is a $\mathrm{QR} \bmod \mathrm{p}],-1$ otherwise $\}$
Euler's Criteron (Final): If p is an odd prime and $\operatorname{gcd}(a, p)=1$, then $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right) \bmod p$
A question: suppose n is an odd integer and $\operatorname{gcd}(a, n)=1$, and $a^{\frac{n-1}{2}} \equiv\left(\frac{a}{n}\right) \bmod n$. Does that imply that n is a prime?

The Solovary-Strassen compositeness test: pick $\alpha, 1<\alpha<n$, at random. If $\operatorname{gcd}(a, n) \neq 1$, return composite. Else $x=\left(\frac{a}{n}\right)$. Set $y=a^{\frac{n-1}{2}} \bmod n$. If $x \equiv y \bmod n$ return prime. else return composite.

Feb 25th

Midterm 1: Bring paper!
Topics: Overview PKC, XGCD, RSA, Monto Carlo and Las Vegas Test, Square and Multiply, Issues with RSA, CRT, Z_{n}^{*} (set of numbers invertible mod n), FLT, Euler-Fermat, $\phi(n)$, orders of elements $\left(\operatorname{ord}_{n}(a)\right)$, primeality testing (finding primes), primitive elements, certificates of primitivity, why RSA is hard to break, pseudoprimes, psuedoprime test (if $a^{n-1} \equiv 1 \bmod n$, return PRIME, else return COMPOSITE), strong pseudoprimes, Miller-Rabin Test $\left(n-1=2^{e} * t\right.$, t odd, if n is prime, then n divides one of the factors of $\left.\alpha^{n-1}-1=\left(\alpha^{t}-1\right)\left(\alpha^{t}+1\right)\left(a^{2 t+1}\right) \ldots .\left(a^{2^{e-1} t}+1\right)\right)$, Factoring, Pollard $p-1$, Pollard Rho

Given p a prime >2, and $a \in \mathbb{Z}$, define $\left(\frac{a}{p}\right)$ by \ldots
Euler's Criteron: If $\operatorname{gcd}(a, p)=1$, then $a^{\frac{p-1}{n}} \equiv 1$ or -1 where a is a QR mod p or a QNR mod p respectively.
Showed that if g is a prime elt $\bmod \mathrm{p}$ and $a \equiv g^{k} \bmod p$, then a is a square $\bmod \mathrm{p}$ if and only if k is even.
Euler's Criteron showed that if p is an odd prime and $\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1$, then $a^{\frac{o-1}{2}} \equiv\left(\frac{a}{p}\right) \bmod p$
Solovay-Strassen Test (yes-biased for " n is composite") For random a, calculate $a^{\frac{n-1}{2}}$ and ($\frac{a}{n}$). If they are equal, return prime. else return composite.
Ex. Find ($\frac{7411}{9283}$) In Mathematica, use JacobiSymbol[7411,9283].
Let n be odd and positive. Thus, $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}, p_{i}$ all odd. Let $a \in \mathbb{Z}$, then define the Jacobi Symbol $\left(\frac{a}{n}\right):=\prod_{i=1}^{r}\left(\frac{a}{p_{i}}\right)^{e_{i}}$
Rules - Let $a, b \in \mathbb{Z}$ and n an odd and positive. Then:

1. If $a \equiv b \bmod n$, then $\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$
2. $\left(\frac{2}{n}\right)=1$ if $n \equiv 1$ or $-1 \bmod 8,-1$ if $n \equiv 3$ or $-3 \bmod 8$
3. $\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$
4. QRL: If m and n are odd positive integers and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\left(\frac{m}{n}\right)=\left(\frac{n}{m}\right)$ if $n \equiv 1$ orm $\equiv 1 \bmod 4$

Mar 1st

Chapter 6!

Discrete \log problem mod p: given a prime p, a primitive element $g \bmod p$ and an integer β, we know there exists $l \in\{1,2, \ldots, p-1\}$ such that $g^{l} \equiv B \bmod p$ given g and β, find l.

$$
\text { Given } b^{x}=y \text { where } b, y \in \mathbb{R}^{+} \text {then } x \ln (b)=\ln (y) \text { so } x=\frac{\ln (y)}{\ln (b)}
$$

Cant do this with mods!
$\operatorname{Mod} 13: g=2$. by $\log y$ is meant the number l such that $2^{l} \equiv y \bmod \beta$

l	1	2	3	4	5	6	7	8	9	10	11	12
$2^{l} \bmod 13$	2	4	8	3	6	12	11	9	5	10	7	1

Rearrange $2^{l} \bmod 13$ to invert permutation

$2^{l} \bmod 13$	1	2	3	4	5	6	7	8	9	10	11	12
l	12	1	4	2	9	5	11	3	8	10	7	6

primitive element is called a generator in modern algebra
For moderately large prime, the permutation of logs is hard to determine.
Alice - Bob
Public Key: P a large prime, g and a primitive element mod P.
Private Information: integer $\bmod P-1$
Alice picks α, Bob picks β
Alice computes $g^{\alpha} \bmod P$, calls this A
Bob computes $g^{\beta} \bmod P$, calls this B
Alice sends A to Bob, Bob sends B to Alice
Bob computes B^{α}. Alice computes A^{β}
Since $B^{\alpha}=\left(g^{\beta}\right)^{\alpha} \equiv g^{\beta \alpha} \equiv\left(g^{\alpha}\right)^{\beta}=A^{\beta} \bmod P$
Thus Alice and Bob have a shared secret number.

March 4th

El Gamul crypto system - Discrete logs in a general setting
G is a finite group under multiplication such as \mathbb{Z}_{p}^{*}
$\alpha \in G$ has order n where n is the smallest positive integer k such that $\alpha^{k}=1$ where 1 is the identity el't of G.

Given discrete \log problem in G : given β known to be a power of α, find the power. That is, given α and $\beta=\alpha^{l}$, find l.
Define $<\alpha>=\left\{\alpha^{k}: 0 \leq k \leq n-1\right\}$ where $n=$ order of α. Given $\beta \in<\alpha>$, find the unique $l \in\{0,1, \ldots, n-1\}$ such that $\beta=\alpha^{l}$.

The El Gamal cryptosystem.
Alice - [Eve] — Bob
Alice sends message to Bob
Public Info: takes place in \mathbb{Z}_{p}^{*}, the non-zero integer mod p (large prime). The public information is then prime p and a primitive element $\alpha \bmod \mathrm{p}\left(\alpha \in \mathbb{Z}_{p}^{*}\right.$, and $\left.<\alpha>=\left\{\alpha^{j}: 0 \leq j \leq p-1\right\}=\mathbb{Z}_{p}^{*}\right)$
Bob chooses some random integer $a \in\{1, \ldots, p-1\}$ and computes $\beta \equiv \alpha^{a} \bmod$ p. Bob keeps a secret and publishes β.
Thus the public information (key) is p, α, β. Bob's private info is a. Alice's private info is a randomly chosen integer $k \in\{1, \ldots, p-1\}$.
To send a message X, Alice computes $y_{1} \equiv \alpha^{k} \bmod p$ and $y_{2}=X \times \beta^{k} \bmod p$.
Alice sends the pair $\left(y_{1}, y_{2}\right)$ to Bob.

To read the message, Bob knows that $y_{2}=X \times \beta^{k}$ and $\beta=\alpha^{a}$. Thus $y_{2}=X \times \beta^{k} \equiv X \times\left(\alpha^{a}\right)^{k} \equiv$ $X \times\left(\alpha^{k}\right)^{a} \equiv X \times y_{1}^{a}$.
Because Bob knows $a, X \equiv y_{2} \times\left(y_{1}^{a}\right)^{-1} \bmod p$ for $y_{2} \times\left(y_{1}^{a}\right)^{-1}=X \times y_{1}^{a} \times\left(y_{1}^{a}\right)^{-1}=X \bmod p$. Thus Bob knows X.

If Eve can compute discrete $\log \bmod p$, then Eve can read the message.
Do not reuse α or k but a can be reused.
Attacks on the discrete log problem
Shanks Algorithm (also known as "baby step giant step") is for solving the discrete log problem.
Given α, β, where $\beta=\alpha^{l}$, $\operatorname{ord}(\alpha)=\mathrm{n}$, and $0 \leq l \leq n-1$
All in a group G where α has an order n.
Set $m=$ ceiling $\ulcorner\sqrt{n}\urcorner=$ least integer $\geq \sqrt{n} .(\operatorname{ceiling}(300)=18)$
Stinson uses $\ulcorner\sqrt{n}\urcorner=m$
From two lists of ordered pairs:

1. $L_{1}=\left\{\left(j, \alpha^{m j}\right): 0 \leq j \leq m-1\right\}$
2. $L_{2}=\left\{\left(i, \beta \alpha^{-i}\right): 0 \leq i \leq m-1\right\}$
$0 \leq l=\log _{\alpha} \beta \leq n-1$
Divide l by m to get $l=q_{1} m+q_{0}$ with $0 \leq q_{0} \leq m-1$ and $0 \leq l \leq n-1 . m \geq \sqrt{n} \Rightarrow m^{2} \geq n$ so $0 \leq m-1 \leq m^{2}-1=m^{2}-m+m-1=m(m-1)+m-1$

March 8th

Pollard-Rho for DLP (given $\beta \in G$, find $l: \beta=\alpha^{l}$ in G)
Setup: a group G - cyclic of order $\mathrm{n}\left(\exists \alpha \in G: G=\left\{\alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}=<\alpha>\right)$

1. Partition G into roughly 3 equal sized subsets s_{1}, s_{2}, s_{3}.
2. Define a function of 3 variables

$$
\begin{aligned}
& f(x, a, b)=(\beta x, a, b+1) \text { if } x \in s_{1} \\
& f(x, a, b)=\left(x^{2}, 2 a, 2 b\right) \text { if } x \in s_{2} \\
& f(x, a, b)=(\alpha x, a+1, b) \text { if } x \in s_{3}
\end{aligned}
$$

Begin at $(1,0,0)$
Particular example: $G=\mathbb{Z}_{p}^{*}$
$s_{1}=\{x: x \equiv 1 \bmod 3\} s_{1}=\{x: x \equiv 0 \bmod 3\} s_{1}=\{x: x \equiv 2 \bmod 3\}$
Thus $f(1,0,0)=(\beta, 0,1)$
Additional rule: Each triple must satisfy $x=\alpha^{a} \beta^{b}$
if (x, a, b) satisfies $x=\alpha^{a} \beta^{b}$, then $f(x, a, b)=\left(x_{1}, a_{1}, b_{1}\right)$ satisfies $x_{1}=\alpha^{a_{1}} \beta^{b_{1}}$
$x \in s_{1} \Rightarrow\left(x_{1}, a_{1}, b_{1}\right)=\left(B_{x}, a, b+1\right)$ and $x=\alpha^{a} \beta^{b} \Rightarrow x_{1}=\beta x=\alpha^{a} \beta^{b+1}$
if $x=\alpha^{a} \beta^{b}$ and $x \in s_{2}$, then $x_{1}=x^{2}=\alpha^{2 a} \beta^{2 b}$ and $f(x, a, b)=\left(x^{2}, 2 a, 2 b\right)$ and same with s_{3}

Compute $\left(x_{1}, a_{1}, b_{1}\right)\left(x_{2}, a_{2}, b_{2}\right), \ldots,\left(x_{k}, a_{k}, b_{k}\right)$ and $\left(x_{2}, a_{2}, b_{2}\right)\left(x_{4}, a_{4}, b_{4}\right), \ldots,\left(x_{2 k}, a_{2 k}, b_{2 k}\right)$
Check to see if $x_{k}=x_{2 k}$, then $\alpha^{a_{2 k}} \beta^{b_{2 k}}=\alpha^{a_{k}} \beta^{b_{k}}$.
Let $\beta=\alpha^{l}\left(l\right.$ is the unknown DL of β) and so $\alpha^{a_{2 k}} \alpha^{l b_{2 k}}=\alpha^{a_{k}} \alpha^{l b_{k}}$. Therefore $\alpha^{a_{2 k}+l b_{2 k}}=\alpha^{a_{k}+l b_{k}} \Rightarrow$ $\alpha^{a_{2 k}-a_{k}+l\left(b_{2 k}-b_{k}\right)}=1$

If $\alpha^{r}=1$, then $\operatorname{ord}_{\alpha} \mid r$. Therefore $a_{2 k}-a_{k}+l\left(b_{2 k}-b_{k}\right) \equiv 0 \bmod n$, where $\mathrm{n}=$ ord α
If $\operatorname{GCD}\left(b_{2 k}-b_{k}, n\right)=1$, then $l \equiv\left(b_{2 k}-b_{k}\right)^{-1}\left(a_{k}-a_{2 k}\right) \bmod n$
The Birthday paradox
Let $P_{k}=\operatorname{Prob}($ no two out of k share a birthday)
$P_{2}=\frac{364}{365}, P_{3}=\frac{364}{365} \frac{363}{365}, \ldots$
$\operatorname{Pr}($ at least on birthday match $)=1-\prod_{i-1}^{k-1}\left(1-\frac{i}{365}\right)$
Plotted, point of inflection is at 23

March 18th

The discrete \log problem (DLP): Given a group G (multiplicative for now) and $\alpha \in G ; \beta \in G$ satisfies $\beta \in<\alpha>:=\left\{\alpha^{k} \mid k \in \mathbb{Z}\right\}$
Since $\beta \in<\alpha>$, there exists l such that $\beta=\alpha^{l}$. DLP: find $l: \log \beta$
Specialize to \mathbb{Z}_{p}^{*}, which has a primitive element α whos order $=\mathrm{p}-1$ and so if $\alpha^{l} \equiv \beta \bmod p$, then $l \in\{2, \ldots, p-2\}$
The Index Calculus - fast attack on discrete logs
But first: Factoring by combining congruences.
Begins with Fermat's observation:
$n=x^{2}-y^{2}=(x-y)(x+y)$, find x and y such that $x^{2}-y^{2}=n$, with $n=(x-y)(x+y)$ with $x \pm y \neq 1$ or n.

Guess?: suffices to find x and $y: x^{2} \equiv y^{2} \bmod n\left[x^{2}-y^{2}=n * k\right]$ but $x \not \equiv \pm y \bmod n$ then $\operatorname{gcd}(x-y, n)$ is a proper factor of n.

March 20th

Factoring using squares (see handout)

March 22nd

The Index Calculus

Index calculus for discrete logs in \mathbb{Z}_{p}^{*}
Given $\alpha, \beta \in \mathbb{Z}_{p}^{*}$ where α is a primitive element and there exists an integer l where $(1 \leq l \leq p-1)$ such that $\beta \equiv \alpha^{l} \bmod p$. Find l.

Two phases:

1. Pre-computation: Pick a set $B=\left\{p_{1}, p_{2}, \ldots, p_{B}\right\}$ of small primes. Let $C \sim|B|+10=B+10$. Find about C congruences $\bmod p$, each of the form $\alpha^{x j} \equiv p_{1}^{e_{1, j}} p_{2}^{e_{2, j}} \ldots p_{B}^{e_{B, j}} \bmod p$ where e_{i} is an integer ≥ 0.
Lemma: If $l_{1}=\log \beta_{1}$ and $l_{2}=\log \beta_{2}$, then $\log \left(\beta_{1} \beta_{2}\right) \equiv l_{1}+l_{2} \bmod p-1$.
Proof: Let $l=\log \beta_{1} \beta_{2}$. Then $\alpha^{l}=\beta_{1} \beta_{2} \equiv \alpha^{l_{1}} \alpha^{l_{2}} \equiv \alpha^{l_{1} l_{2}} \bmod p \Rightarrow l \equiv l_{1}+l_{2} \bmod p-1$
Each of these C congruences can be written as $x j=e_{1, j} p_{1}+e_{2, j} p_{2}+\ldots+e_{B, j} p_{B} \bmod p-1$

Try to solve the system of congruences $x_{1} \equiv e_{1,1} p_{1}+\ldots e_{B, 1} p_{B} \bmod p-1 \ldots x_{C} \equiv e_{1, C} p_{1}+\ldots+e_{b, C} p_{B}$ $\bmod p-1$

This yields $\left\{\log p_{1}, \log p_{2}, \ldots, \log p_{B}\right\}$
2. Computation phase: pick random values of $s \in\{1, \ldots, p-1\}$

Compute $\gamma \equiv \beta \alpha^{s} \bmod p$ and hope that you can factor γ over B
If it works for some s for which $\log \left(\beta \alpha^{s}\right)=r_{1} \log p_{1}+\ldots+r_{B} \log p_{B} \bmod p-1$, you have $\log \beta+s \log \alpha \equiv$ $r_{1} \log p_{1}+\ldots+r_{B} \log p_{B} \bmod p-1$
$\Rightarrow \log \beta=\sum_{i=1}^{B} r_{1} \log p_{i}-s \bmod p-1$.
$\log \beta=l$ means $\beta=\alpha^{l}$. Therefore $\log \alpha=l$ means $\alpha^{1}=\alpha^{l}$.
A tiny but useful example: $p=131, \alpha=2$. Find $\log 37$, that is the value of l such that $37 \equiv 2^{l}$ $\bmod 131$.
let $B=\{2,3,5,7\} . \log n=\log _{2} n \bmod p$
$\log 2=1$ because we know $2^{1}=2$.
$2^{8} \equiv 5^{3} \bmod p, 2^{12} \equiv 5 * 7,2^{14} \equiv 3^{2}, 2^{34 \equiv} 3 * 5^{2}$
Thus $1=\log 2 \bmod 130$.
$8 \equiv 3 \log 5$
$12 \equiv \log 5+\log 7$
$14 \equiv 2 \log 3(130) \Rightarrow 7=\log 3 \bmod 65$
$34=\log _{3}+2 \log 5 \bmod 130$
Thus: $\log 5 \equiv 46, \log 7 \equiv 96, \log 3 \equiv 72 \bmod 130$
$\left[\begin{array}{cccc}0 & 3 & 0 & 8 \\ 0 & 1 & 1 & 12 \\ 2 & 0 & 0 & 14 \\ 1 & 2 & 0 & 34\end{array}\right]$
$\bmod 130$
$2 \log 3 \equiv 14(\bmod 130) \Rightarrow \log 3 \equiv 7 \bmod \frac{130}{G C D(130,2)}$. Therefore $\log 3 \equiv 7 \bmod 65$ so $\log 3 \equiv 7$ or $\log 3 \equiv$ $7+65 \bmod 130$

Try factoring $37 * 2^{r}$ over $\{2,3,5,7\} \bmod 130$.
Turns out, $37 * 2^{43} \equiv 3 * 5 * 7 \bmod 131$
$\log 37+43 \equiv \log 3+\log 5+\log 7 \bmod 130$
Therefore $\log 37 \equiv 72+46+96-43 \bmod 130 \equiv 41 \bmod 130$.
Sure enough, $2^{41} \equiv 37 \bmod 131$.

March 25th

Elliptic Curves - the set of all solutions (x, y) to the equation $y^{2}=x^{3}+a x+b$, where $x^{3}+a x+b$ has no multiple (repeated) roots.
Fact: $x^{3}+a x+b$ has no multiple roots if and only if $\Delta \equiv-4 a^{3}-27 b^{2} \neq 0$
Suppose $f(x)=(x-r) g(x)$, using the product rule, $f^{\prime}(x)=g(x)+(x-r) g^{\prime}(x)$. Therefore r is a root of $f^{\prime}(x)$ if and only if r is a root of $g(x)$. Thus $f(x)=(x-r)^{2} * h(x)$.
In how many points does a line $(y=m x+k)$ intersect $y^{2}=x^{3}+a x+b ? 3$
$\{x=r\}$ meets $\left\{y^{2}=x^{3}+a x+b\right\}$ in two points: $x=r, y^{2}=r^{2}+a r+b$
Let l be the line $y=m x+k$. How many points of intersection are there between l and the elliptic curve?

Substitution of $y=m x+k$ yeilds $m^{2} x^{2}+2 m k x+k^{2}=x^{3}+a x+b$. This becomes $x^{3}-m^{2} x^{2}+(a-2 m k) x+$ $b-k^{2}=0$

Let $a=\left(x_{1}, y_{1}\right)$ and $b=\left(x_{2}, y_{2}\right)$ be on the intersection of the curve.

1. $y_{1}=m x_{1}+k, y_{2}=m x_{2}+k \Rightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ (slope)

Using the factor theorem, we have that if r_{1}, r_{2}, r_{3} are the roots of $x^{3}-m^{2} x^{2}+(a-2 m k) x+b-k^{2}=0$, then $x^{3}-m^{2} x^{2}+\ldots=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-r_{3}\right) \Rightarrow x^{3}-m^{2} x^{2}+\ldots=x^{3}+x^{2}\left(-x_{1}-\right.$ $\left.x_{2}-r_{3}\right)+\ldots$
Thus $-m^{2}=-x_{1}-x_{2}-r_{3}$. Therefore if $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are on the line $y=m x+k$ intersected with $y^{2}=x^{3}+a x+b$, the third intersection $\left(r_{3}\right)$ satisfies $m^{2}=x_{1}+x_{2}+r_{3}$, that is $r_{3}=m^{2}-x_{1}-x_{2}$ (which gives us the x coordinate).

An example: The curve is $y^{2}=x^{3}-2 x+5 . a=(1,2), b=(2,-3)$. The slope is therefore $m=-5$. The third root is therefore $r_{3}=m^{2}-x_{1}-x_{2}=22$. For $\left(r_{3}, s_{3}\right)$ is on the curve, then s_{3} satisfies $s_{3}^{2}=22^{3}-2 * 22+5=$ $10648-44+5=10609=(\pm 103)^{2}$. Therefore $s_{3}=103$ or -103 . Thus $\left(r_{3}, s_{3}\right)=(22,-103)$.

Def. Given $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ on the curve, let $R\left(r_{3}, x_{3}\right)$ be the third point of intersection and define $x_{3}=r_{3}, y_{3}=-s_{3}$, then $A+B:=\left(x_{3}, y_{3}\right)$.

March 29th

Discrete Log Problem

Def. Let $p>2$ be a prime and get $\operatorname{GCD}(\mathrm{n}, \mathrm{p})=1$. Then $\left(\frac{n}{p}\right)=1$ if $x^{2} \equiv n \bmod p$ has a solution and if -1 if $x^{2} \equiv n \bmod p$ has no solution. Also, if $p \mid n$, set $\left(\frac{n}{p}\right)=0$

April 1st

Diffie-Helman Key Agreement
Public information: a large prime p, a generator (primitive element) γ of \mathbb{Z}_{p}^{*}
Private information:
Alice: a random integer $a \in\{2, \ldots, p-2\}$
Bob: a random integer $b \in\{2, \ldots, p-2\}$
Alice computes $A \equiv \gamma^{a} \bmod p$ offline and Bob computes $B \equiv \gamma^{b} \bmod p$ offline.
Alice sends A to Bob who sends B to Alice.
Alice computes $B^{a} \bmod p$ and Bob computes $A^{b} \bmod p$
Since $B^{a} \equiv\left(\gamma^{b}\right)^{a} \equiv \gamma^{b a} \equiv \gamma^{a b} \equiv\left(\gamma^{a}\right)^{b} \equiv A^{b} \bmod p$
Thus B^{a} is the shared secret
Ex. $p=27001, \gamma=101$. Alice picks $a=21768$, computes $A=\gamma^{a} \equiv 7580 \bmod p$. Bob picks $b=9898$, computes $B=\gamma^{b} \equiv 22181 \bmod p$

Alice computes $B^{a} \equiv 10141 \bmod p$. Bob does the same thing and reaches the same number. Thus the secret key $S=10141$.
An attack on the D-H: Eve in the middle
Eve knows p and γ. Eve picks some random $z \in\{2, \ldots, p-2\}$ and intercepts γ^{a} and γ^{b}. She then computes γ^{z} and sends it to both of them. Eve then computes $\left(\gamma^{a}\right)^{z}$ and Alice computes $\left(\gamma^{z}\right)^{a}$ thinking its $\left(\gamma^{b}\right)^{a}$. Same thing with Bob.

Thus $\left(\gamma^{a}\right)^{z}=\left(\gamma^{z}\right)^{a}=S_{a},\left(\gamma^{b}\right)^{z}=\left(\gamma^{z}\right)^{b}=S_{b}$

Alice $\leftarrow S_{a} \rightarrow$ Eve $\leftarrow S_{b} \rightarrow$ Bob
Elliptic Curve DH
Public Info: a large prime p and a different prime q, an elliptic curve E over \mathbb{Z}_{p} such that $\left|E\left(\mathbb{Z}_{p}\right)\right|=q$, and a point $p \in E$ of order q.
Private Info: Alice chooses a random $a \in\{2, \ldots, p-2\}$ and computes the point $A=a * p$ on E and sends A to Bob. Bob picks $b \in\{2, \ldots, p-2\}$ and sends $B=b * p$ to Alice.

Alice: $a * B=a *(b * p)=a * b * p=b * a * p=b *(a * p)=b * A$

April 3rd

Digital Signatures

Desired properties: uniquely identifiable, verifiable, unforgeable, tied to document, timestamp, sender cannot repudiate

RSA signature scheme
Setup: $n=p q$ where p,q prime, e and d encryption and decryption exponent.
Alice sends message (m) to Bob.
Alice establishes her RSA system with n_{A}, her public mod and e_{A}, d_{A}, her encryption and decryption exponents.

Alice sends $y \equiv m^{d_{A}} \bmod n_{A}$ (the signature) and m (the message)
The signature is (m, y).
Bob computes $s \equiv y^{e_{A}} \bmod n_{A}$.
$s \equiv m \bmod n_{A}$, verification is ok. $s \not \equiv m \bmod n_{A}$, verification is not ok.
Note: say $s \equiv y^{e_{A}} \equiv\left(m^{d_{A}}\right)^{e_{A}} \equiv m^{d_{A} e_{A}} \equiv m \bmod n_{A} . \quad d_{A} e_{A} \equiv 1 \bmod n_{A}, \phi(n) \mid d e \Rightarrow m^{d e} \equiv m$ $\bmod n$

El Gamal:
Public parameters: large prime p, primitive element $\alpha \in \mathbb{Z}_{1}^{*}, \beta \equiv \alpha^{a} \bmod p$
Private parameters: an exponent $a \in\{2, \ldots, p-2\}$
Alice sends a pair $\left(y_{1}, y_{2}\right)$ to Bob.
Alice picks $k \in\{2, \ldots, p-2\}$, sends $y_{1} \equiv \alpha^{k} \bmod p$ and $y_{2} \equiv m * \beta^{k} \bmod p$
$\operatorname{GCD}(k, p-1)=1$ (relatively prime)
Bob computes $y_{2}\left(y_{1}^{-1}\right)^{a} \bmod p \equiv m * \beta^{k} *\left(\alpha^{k}\right)^{-a} \equiv m\left(\alpha^{a k} * \alpha^{-a k}\right) \bmod p \equiv m \bmod p$
El Gamal is slow and complicated!
El Gamal signature scheme:
Alice computes $\gamma \equiv \alpha^{k} \bmod p\left(\gamma=y_{1}\right)$ and $\delta \equiv(m-a \gamma) * k^{-1} \bmod p-1$.
For a signature scheme, $\operatorname{GCD}(k, p-1)=1$.
Alice sends (m, γ, δ) to Bob.
Bob computes $v_{1} \equiv \beta^{\gamma} * \gamma^{\delta} \bmod p$ and $v_{2} \equiv \alpha^{m} \bmod p$.
Verification is ok if and only if $v_{1} \equiv v_{2} \bmod p$
Want $\alpha^{m} \equiv \beta^{\gamma} \gamma^{\delta} \bmod p$. Leave γ as in the exponent. Therefore $\alpha^{m} \equiv \alpha^{a \gamma} \gamma^{\delta} \bmod p \equiv \alpha^{a \gamma} \alpha^{k * \delta} \bmod p \equiv$ $\alpha^{a \gamma+k \delta} \bmod p$ thus α primitive where the previous holds if and only if $m \equiv a \gamma+k \delta \bmod p-1$.

April 5th

ElGamal in \mathbb{Z}_{p}^{*}, p a large prime a is for long-term use, k is short-term (session key)
Example. $p=467, \alpha=2, a=127, \beta=2^{127} \equiv 132 \bmod p$
Alice signs $m=100$, using $k=213$
Then $k^{-1} \equiv 431 \bmod p$
Alice calculates $\gamma=2^{213} \equiv 29 \bmod p$ and $\delta=(100-127 * 29) 431 \bmod p-1 \equiv 51$
Thus signature is $(100,29,51)$
$v_{2}=2^{100} \equiv 189 \bmod p$ and $v_{1}=132^{29} * 29^{51} \bmod p \equiv 189 \bmod p$
Hash function: a mapping $h: S \rightarrow T$ where S is a set of strings of arbitrary length and T the set of all strings of some fixed length
for DSA (digital signature algorithm), $T=160$ bit strings
Public parameters: p is an L-bit prime, $512 \leq L \leq 1024, q$ is a 160 -bit prime such that $q \mid p-1, g$ is a primitive element $\bmod \mathrm{p}\left(\operatorname{ord}_{p}(g)=p-1\right), h$ is a hashing function mapping arbitrary strings into 160-bit strings, $\alpha \equiv g^{\frac{p-1}{2}} \bmod p$
Note g has order $p-1$ so $\alpha \equiv g^{\frac{p-1}{2}} \bmod p$ has order $q-\alpha^{q} \equiv 1 \bmod p$. where $\beta \equiv \alpha^{a} \bmod p$ (a is Alice's private info)
To sign m, Alice picks $k \in\{2, \ldots, q-2\}$
Alice computes $\gamma \equiv\left(\gamma^{k} \bmod p\right) \bmod q . \delta \equiv(h(m)+a(\gamma)) k^{-1} \bmod q$
Alice sends (m, γ, δ)
a is a long-term private key, k is a short message key
Bob computes $e_{1} \equiv h(m) \delta^{-1} \bmod q$ and $e_{2} \equiv \gamma \delta^{-1} \bmod q$
Verification is ok if and only if $\left(\alpha^{e_{1}} \beta^{e_{2}} \bmod p\right) \bmod q=\gamma$

April 8th

Secret splitting - dealer wants to split a secret value M between A and B
D picks a random positive integer, gives r to Alice, M-r to Bob.
Pick $n>$ any potential msg. D picks a random integer $r \bmod n$. Gives r to Alice ($r \bmod n$) and M-r to Bob (M-r mod n)
Add C to this, give r to A, s to $\mathrm{B}, \mathrm{M}-(\mathrm{r}+\mathrm{s})$ to C
Def. Let $0<t \leq w$, positive integers
A (t, w) threshold scheme is a way to share a message value M among w participants such that

1. any t or more participants can reconstruct the message

2 . but no set of $\leq t-1$ participants can do so
Let p be a prime $\geq w+1$. Dealer constructs a polynomial $f(x)$ with coefficients in \mathbb{Z}_{p} of degree $\leq t-1$. say $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$.
The dealer assigns player i the share $\left(x_{i}, y_{i}\right)$ where $y_{1} \equiv f\left(x_{1}\right) \bmod p$. The secret is a_{0}.
Ex. $p=17, t=3, w=5, P_{1}, P_{3}, P_{5}$ are collaborating.
$P_{1}=(1,8), P_{3}=(3,10), P_{5}=(5,11) \bmod 17$.
(1) $a_{0}+a_{1}+a_{2} \equiv 8 \bmod 17$
(3) $a_{0}+3 a_{1}+9 a_{2} \equiv 10 \bmod 17$
(5) $a_{0}+5 a_{1}+25 a_{2} \equiv 11 \bmod 17$

Solve the system to get $a_{1} \equiv 10, a_{2} \equiv 2, a_{0} \equiv 13 \bmod 17$
The polynomial $f(x)$ has a very nice expression as a sum of t terms, each term being almost a poly $l_{j}(x)$ with the feature that $l_{j}\left(x_{R}\right)=0$ if $j \neq k=1$ if $j=k$. Thus $f(x)=l_{1}(x) y_{1}+l_{2}(x) y_{2}+\ldots+l_{t}(x) y_{t}$

April 10th

Threshold schemes
From a population of w participants, devise a scheme such that any t or more participants can determine the value, but any fewer than t participants cannot.

A polynomial $f(x)$ of degree $t-1$ can be determined uniquely given any t distinct points.
P_{i} gets $\left(x_{i}, y_{i}\right)$ we have $y_{i}=f\left(x_{i}\right)=a_{0}+a_{i} x_{i}+\ldots+a_{t-1} x_{i}^{t-1}$ with a_{1}, \ldots, a_{t-1} are randomly chosen from $[1 . . q]$ where q is a prime "large enough" and arithmetic in $\bmod q$ and a_{0} is the secret.
Let $V=\left[\begin{array}{ccccc}1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{t-1} \\ 1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{t-1} \\ . & \ldots & \ldots & \ldots & \ldots \\ 1 & x_{t} & x_{t}^{2} & \ldots & x_{t}^{t-1}\end{array}\right]$
$\operatorname{det}(V)=\sum_{i<j}\left(x_{j}-x_{i}\right) \not \equiv 0 \bmod q$ because x_{i} s are all different.
Therefore can solve for $a_{i}: V\left[\begin{array}{c}a_{0} \\ \ldots \\ a_{t-1}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \ldots \\ y_{t}\end{array}\right]$
(1) Find polynomials $l_{i}(x)$ where $1 \leq i \leq t$ such that $l_{i}\left(x_{j}\right)$ is 1 if $i=j$ and 0 if $i \neq j$

Ex. $\mathrm{t}=4, \mathrm{i}=3$.
$g(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right): g\left(x_{j}\right)=0$ if $x_{j}=x_{1}, x_{2}, x_{4} . g\left(x_{3}\right)=\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right) \neq 0$.
Let $l_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)}$.
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{4}, y_{4}\right)$ given points on curve.
$L(x)=y_{1} l_{1}(x)+y_{2} l_{2}(x)+y_{3} l_{3}(x)+y_{4} l_{4}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
$L(0)=a_{0}$ is the secret.
$L(x)=\sum_{i=1}^{t} y_{i} l_{i}(x)$
Therefore $L(0)=q=\sum_{l=i}^{t} y_{i} l_{i}(0)$
$l_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}$. Therefore $l_{i}(0)=\prod_{j \neq i, 1 \leq j \leq t} \frac{-x_{j}}{\left(x_{i}-x_{j}\right)}$
Therefore $L(0)=a_{0}=\sum_{i=1}^{t} y_{i} \prod_{j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}$
$(4,25),(-7-85),(2,19) . L(0)=a_{0}=\sum_{i=1}^{t} y_{i} \prod_{j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}=\sum_{i=1}^{3} y_{i} \prod_{j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}=y_{1}\left(\frac{7}{4+7}\right)\left(\frac{-2}{4-2}\right)+y_{2}\left(\frac{-4}{-7-4}\right)\left(\frac{-2}{-9}\right)+$
$y_{3}\left(\frac{-4}{2-4}\right)\left(\frac{7}{2+7}\right)=25\left(\frac{7}{11}\right)\left(\frac{-2}{2}\right)-85\left(\frac{-4}{-11}\right)\left(\frac{-2}{-9}\right)+19\left(\frac{-4}{-2}\right)\left(\frac{7}{9}\right)=\frac{61}{9} ? ? ?$

April 15th

Variations on Shamir's Scheme

A scheme with $\mathrm{t}=8$
Boss has 4 shares, daughter have 2 shares apiece. workers have one share apiece.
$\#$ daughters $n_{d} \geq 4$ or $\#$ workers $n_{w} \geq 8$
A scheme with two companies A and B
They agree that it takes 4 members of company A and three members of B to secure the key (Secret)
Company A has a secret S_{A} and B has another secret S_{B}. Secret S_{A} is obtained using a threshold scheme with $\mathrm{t}=4$ and S_{B} is obtained using $\mathrm{t}=3$.
Master secret $=S_{A}+S_{B}$
A military organization has a general, two colonals, and five recruits.
Only three combinations are allowed:
The general, both colonels, all 5 grunts, or one colonel and 3 grunts.
etc..
Blakley's Threshold Scheme
For shamir used $l_{i}=\prod_{j \neq i} \frac{\left(x-x_{j}\right)}{x_{i}-x_{j}}, L(x)=\sum_{i=1}^{t} y_{i} * l_{i}(x)$, secret is $L(0)$
$t=3$, let $x_{0}=$ secret. Let p be a large prime
Pick $y_{0}, z_{0} \in \operatorname{Random}(p)$
Let $Q=\left(x_{0}, y_{0}, z_{0}\right)$ in $3 \mathrm{D} \bmod p$
For each player, assign $a_{i}, b_{i} \in \operatorname{Random}(p), 1 \leq i \leq t$
Set $c_{i}=z_{0}-a_{i} x_{0}-b_{i} y_{0} \bmod p$
Note that $z \equiv a_{i} x+b_{i} y+c_{i} \bmod p$ is a "plane" in 3 D over \mathbb{Z}_{p}

April 22nd

Zero knowledge proofs
Results: Let p be an odd prime, and let g be a primitive element $\bmod p\left(\right.$ ie. $\left.\digamma_{p}^{*}=\left\{g, g^{2}, \ldots, g^{p-1}\right\}\right)$
There exists exactly $\frac{p-2}{2}$ square $\bmod p, a$ is a square $\bmod p \operatorname{means} X^{2} \equiv a \bmod p$ has a solution and p Xa.
If $1 \leq i, j \leq \frac{p-1}{2}$, then $i^{2} \equiv j^{2} \bmod p$ means $p \mid(i-j) *(i+j)$. Primality $\Rightarrow p \mid i-j$ or $p \mid i+j$. If $i \neq j$, then $p \mid i+j$. But $2 \leq i+j \leq p-1$. Therefore $p \nmid i+j$. So there exists at least $\frac{p-1}{2}$ squares $\bmod p$.
The squares mod p are exactly the even powers $g^{2}, g^{4}, \ldots, g^{p-1} \bmod p$. The nonsquares are the odd powers of $g \bmod p$.
If a is a square $\bmod p$, then $a^{\frac{p-1}{2}} \equiv 1 \bmod p$.
If a is a nonsquare $\bmod p$, then $a^{\frac{p-1}{2}} \equiv-1 \bmod p$.
Proof. First, g is a generator (primitive element) $\bmod p$ so its order is $p-1$, which means $g^{p-1} \equiv 1 \bmod p$ and $g^{\frac{p-1}{2}} \not \equiv 1 \bmod p$.
$\left(g^{\frac{p-1}{2}}\right)^{2} \equiv 1 \bmod p$ so $g^{\frac{p-1}{2}} \equiv-1 \bmod p$ where p is a prime.
Suppose a is a square

Ex. $p=19, g=2$ is a primitive element.
Suppose a is a square mod p. Then $a \equiv g^{2 k} \bmod p$, so that $a^{\frac{p-1}{2}} \equiv\left(g^{2 k}\right)^{\frac{p-1}{2}} \equiv\left(g^{p-1}\right)^{k} \equiv 1 \bmod p$.
Suppose a is a nonsquare $\bmod p$. Then $a \equiv g^{2 l+1} \bmod p$ and so $a^{\frac{p-1}{2}}=g^{(2 l-1)\left(\frac{p-1}{2}\right)} \equiv\left(g^{p-1}\right)^{l} * g^{\frac{p-1}{2}} \equiv$ $g^{\frac{p-1}{2}} \equiv-1 \quad \bmod p$.
Euler's Criteron: If p is an odd prime and $(a, p)=1$, then $a^{\frac{p-1}{2}} \equiv 1$ or $-1 \bmod p$, according as a is or is not a square $\bmod p$.

Key Lemma: Let $p \equiv 3 \bmod 4$. If a is a square $\bmod p$, define $b:=a^{\frac{p+1}{4}} \bmod p$. Then $b^{2} \equiv a \bmod p$.
Ex. 7 is a square: $a=7, p=19$, so $\frac{p+1}{4}=5 . b=7^{5} * b^{2}=y^{10}, b=11, b^{2}=121=7+b * 19$.
Proof: $b^{2} \equiv\left(a^{\frac{p+1}{4}}\right)^{2} \bmod p \equiv a^{\frac{p+1}{2}} \bmod p \equiv a^{\frac{p-1+2}{2}} \bmod p \equiv a^{\frac{p-1}{2}} * a \bmod p \equiv 1 * a \equiv a \bmod p$ as claimed.

Ex. (a zero knowledge proof) Bob finds two large primes p and q such that $p \equiv q \equiv 3 \bmod 4$, and construct $n=p q$.

Bob tells Alice "I know the factorization of n."
Alice chooses x at random between 1 and n, sends Bob the number y where y is the least positive residue of $x^{4} \bmod n$.
(challenge - response - notification)
Bob receives y from Alice, knows y is a square $\bmod n$. Since $y \equiv x^{4} \equiv\left(x^{2}\right)^{2} \bmod n$, it is also true that $y \equiv\left(x^{2}\right)^{2} \bmod p$ and $q \equiv\left(x^{2}\right)^{2} \bmod q$.

Bob computes $\pm y^{\frac{p+1}{4}} \bmod p$ and $\pm y^{\frac{q+1}{4}} \bmod q$. These give 4 square roots of $y \bmod p q$ by the Chinese Remainder Theorem.

However, only one of these square roots of y is itself a square!
Bob finds the value $v \bmod n$ that is in fact a perfect square and sends it to Alice.
Alice knows x, and so computes $x^{2} \bmod n$. If $x^{2} \equiv v \bmod n$, verification is achieved.

April 24th

Alice knows only n, Bob knows $n=p q, p \equiv q \equiv 3 \bmod 4$
Alice picks $x \in \operatorname{Rand}(\mathrm{n})$, sends $y \equiv x^{4} \bmod n$ to Bob.
Bob receives y from Alice, computes $a= \pm y^{\frac{p+1}{4}} \bmod p$. Saw that $y^{\frac{p+1}{4}}$ is a sqrt of $y \bmod p$ if y is a square. $b= \pm y^{\frac{q+1}{4}} \bmod q$.

Exactly one of hte four systems $w \equiv \pm a \bmod p, w \equiv \pm b \bmod q$ has a solution that is a perfect square mod $p \mathrm{p}$ and $\bmod q$ and therefore $\bmod n$.
Bob sends w to Alice.
Alice computes $x^{2} \bmod n$. If $x^{2} \equiv w \bmod n$, then verification is Ok.
Shamir's zero knowledge proof protocol (Repeatable protocol)
Bob chooses $p \equiv q \equiv 3 \bmod 4$, sends $n=p q$ to Alice.
Picks some integer I that represents some sort of personal ID
Finds a small positive integer c such that $v=I \| c$ is a square \bmod both p and q (and thus n)
Note: Bob can find a square root $v \bmod \mathrm{p}$ and $\bmod \mathrm{q}$ and hence $\bmod \mathrm{n}$. There exists u such that $v \equiv u^{2}$ $\bmod n$

Bob sends v to Alice.

1. Bob chooses $r \in \operatorname{Random}[n]$, sends Alice two values: $x \equiv r^{2} \bmod n$ and $y \equiv v x^{-1} \bmod n$
2. Alice checks that the product $x y \equiv v \bmod n$. Alice has seen $v=I \| c \bmod n$ and x and y.

Alice then picks a random bit $b=0$ or 1 , sends to Bob.
3. If $b=0$, Bob sends r to Alice. If $b=1$, Bob sends $u r^{-1}$ to Alice
4. Alice squares what she receives $\bmod n$.

If $b=0$, Alice squares r, sees $r^{2} \equiv x \bmod n$
If $b=1$, Alice squares $\left(u r^{-1}\right)^{2} \equiv v r^{-2} \equiv v r^{-1} \equiv y \bmod n$
If $b=0$ and answer $=x$ or if $b=1$ and answer $=y$, verification is achieved.
Finding squares
Let p be an odd prime and let $\operatorname{GCD}(a, p)=1$.
Define the Legendre Symbol $\left(\frac{a}{p}\right)$ by $\left(\frac{a}{p}\right)=1$ if $x^{2}=a \bmod p$ has a solution and $=-1$ if there is no solution. Thus $\left(\frac{7}{19}\right)=1$ because $7 \equiv 64 \equiv 8^{2} \bmod 19$.
$\left(\frac{a}{p}\right)$ satisfies some rules:

1. Let $\operatorname{GCD}(a, p)=\operatorname{GCD}(b, p)=1$, then $\left(\frac{a^{2}}{p}\right)=1$
2. If $a \equiv b \bmod p$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$
3. $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$
4. Euler's criteron: $\frac{p-1}{2},\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$
5. The special cases:
(a) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}=1$ if $p \equiv 1 \bmod 4$ and -1 if $p \equiv 3 \bmod 4$
(b) $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=1$ if $p \equiv \pm 1 \bmod 8$ and -1 if $p \equiv \pm 3 \bmod 8$
(c) If p and q are distinct odd primes, then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)(-1)$

April 29th

S-T

Given p a prime, with $\operatorname{GCD}(a, p)=1$, Find $x: x^{2} \equiv a \bmod p$ or show none exists
Compute $\left(\frac{a}{p}\right)$. If it is -1 , stop., else go
Write $p-1=2^{s} t$, t odd. Find $n:\left(\frac{n}{p}\right)=-1$
Initialize $x=a^{\frac{t+1}{2}}$ (initial guess), $b=a^{t}$ (correction factor), $g=n^{t}$ and $\operatorname{ord}_{p} g=2^{s}=g^{2^{s-1}}=n^{t * 2^{s-1}}=$ $n^{\frac{p-1}{2}} \equiv\left(\frac{n}{p}\right) \equiv-1 \bmod p$
flag $=1, r=s$, while flag $!=0$, find least m where $0 \leq m \leq r-1 \operatorname{with} b^{2^{m}} \equiv 1 \bmod p$
if $\underset{2^{r-m}}{ }=1$, break and return x . else update $x=x_{\text {next }}=x * g^{2^{r-m-1}}, b=b_{\text {next }}=b * g^{2^{r-m}}, g=g_{\text {next }}=$ $g^{2^{r-m}}, r=r_{n e x t}=m$
Example: $p=113$
$\left(\frac{2}{p}\right)=1, p-1=167=2^{4} 7, s=4, t-7$.

