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August 27th
Affine Cipher e(α = 3α+ 5 mod 26)

1(A) 8(H) 8 = 3 ∗ 1 + 5
2(B) 11(K) 11 = 3 ∗ 2 + 5

∀x, ∃a : e(x) = ax+ b mod n, d(y) = a−1(y − b) mod n
Here, a = 3, b = 5, a−1 = 9.

This is because d(w) = 9 ∗ 3 = 27 ≡ 1 mod 26 = d(23) = 9(23− 5) = 9 ∗ 18 = 152 = 22 mod 26 = V
Affine cipher mod(n) must satisfy e(x) = ax+ b mod n, where a and n have no common divisor except 1

August 29th
Affine cipher example:

FMXV E DKAPH FERBN DKRXR SREFM ORUDS
DKDV S HV UFE DKAPR KDLY E V LRHHRH

e(x) = ax+ b mod n, where gcd(a, n) = 1
The # of these: if n = 26, ans = 12 (throw out even numbers and 13) * 26 = 312 (too many)
To solve, use frequency of letters:

R(8) H(5)
D(7) K(5)
... ...

Let e(E) = R = e(5) = 5a+ b mod 26 = 18 mod 26
Let e(T ) = D = e(20) = 20a+ b mod 26 = 4 mod 26

4 mod 26 = 20a+ b mod 26 (1)

18 mod 26 = 5a+ b mod 26 (2)

Subtracting (2) from (1) results in (−14 mod 26 = 15a mod 26) or (12 mod 26 = 15a mod 26)
As 15−1 = 7, 7 ∗ 15a ≡ 7 ∗ 12 mod 26 = 6 which wont work because gcd(6, 26) 6= 1

Instead of e(T ) = D, Let e(T ) = K = 20a+ b mod 26 = 11 mod 26

11 mod 26 = 20a+ b mod 26 (3)

18 mod 26 = 5a+ b mod 26 (4)

Subtracting (4) from (3) results in (−7 mod 26 = 15a mod 26) or (19 mod 26 = 15a mod 26)

15−1 mod 26 = 7
7 comes from (7 ∗ 15 = 105 = 1 + 4 ∗ 26 ≡ 1 mod 26)
This becomes 7 ∗ 15a ≡ 7 ∗ 19 mod 26
Since 7 ∗ 15 = 1 mod 26, we have a = 133 = 3 mod 26 and e(x) = 3x+ b
We know that 5a+ b = 18 mod 26, thus b is 3 and e(x) = 3x+ 3 mod 26
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if e(α) = aα+ b mod n, then d(β) = means solving for α in the congruence aα+ b ≡ β mod n
d(β) = α−1(β − b) = α−1(β − 3) = 9(β − 3) mod 26 = 9β − 27 mod 26 ≡ 9β − 1 mod 26

e(5) = 18, so d(18) = 5
5 = a−1(18− 3) mod 26
5 ≡ 9(15) mod 26

Decoded solution:

ALGOR ITHMS AREQU ITEGE NERAL DEFIN
ITION SOFAR ITHME TICPR OCESSES

So the question is, how to find the inverse of a mod(n)?

1. Find the GCD of a and n (use euclidean algorithm)
Euclid’s observation: If a = bq + r, then gcd(a, b) = gcd(b, r)

2. From the GCD, calculate inverse

Ex. Find GCD(118, 267), find 118−1 mod 267

267 = 2 ∗ 118 + 31

118 = 3 ∗ 31 + 25

31 = 1 ∗ 25 + 6

25 = 4 ∗ 6 + 1

6 = 6 ∗ 1 + 0

The last non-zero remainder is the GCD (1)

Write out the quotients bottom to top

4 1 3 2
1 4 4*1+1=5 5*3+4=19 19*2+5=43
+ - + - +

1 = 25 - 4 * 6
1 = 25 - 4(31-1*25)
1 = -4 * 31 + 5 * 25
1 = -4 * 31 + 5 (118 - 3*31)
1 = 5 * 118 - 19 * 31
1 = 5 * 118 - 19 (267 - 2 * 118)
1 = -19*267 + 43*118 (43 is the inverse to 118!)

August 31st
Ex. Find

482 = 2 ∗ 216 + 50

216 = 4 ∗ 50 + 16

50 = 3 ∗ 16 + 2

16 = 2 ∗ 8 + 0

Thus, the GCD is 2

2 = 50 - 3 * 16
2 = 50 - 3(216 - 4 * 50)
2 = -3 * 216 + 13 * 50
2 = -3 * 216 + 13 (482 - 2 * 216)
2 = 13 * 482 - 29 * 216
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3 4 2
1 3 13 29
+ - + -

Take the last two with the signs to get 2 = 13 * 482 - 29 * 216
As a congruence of 482, we have 2 ≡ −29 ∗ 216 mod 482, thus 216 is not invertible.
Suppose ∃d : 216d ≡ 1 mod 482 but this is not possible.

Eulers (sounds like boilers)
For n is a positive integer, φ(n) = |a|1 ≤ a ≤ nand gcd(a, n) = 1|
φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(p) = p− 1, φ(p2) = p2 − p, φ(pr) = pr − pr−1
φ(pq) = pq − q − p+ 1 = (p− 1)(q − 1)
If (a, b) = 1, φ(ab) = φ(a)φ(b)

September 3rd
1. Kerkhoffs Law - When designing a crypto system that is hard to break, you must always assume that

the other party knows everything about the crypto system. The key determines the secrecy.

2. Shannon’s Law of Diffusion - Changing one plain text character affects several cipher text characters
and vice versa.

3. Shannon’s Law of Confusion - The cipher text does not relate to the key in a simple way.

Polyalphabetic ciphers
Vigenère cipher
The key is a string of length n called the keyword.
Kasiski Test - Look for trigraphs or longer that repeat

September 5th
Vigenère cipher

• Determine monoalphabetic vs polyalphabetic

• Two ways to determine the key length

1. Kasiski Test

2. IC - The index of coincidence
The IC of a string of characters is the probability that two randomly chosen characters from the
string are the same
If the alphabet has characters c1, c2, c3, ..., cr, then the answer to Pr (picking 2 c1’s) + Pr(picking

2 c2’s) + ... =
r∑

i=i

Pr(2 ci’s) where Pr(2 char’s ci) =
ci

#chars
∗ #ci − 1

#chars− 1
where # chars =

number of characters in the string

Let fi = # of instances of ci, ANS

(
fi
2

)
=
fi(fi − 1)

2

Thus for a string of length R, IC =
r∑

i=1

fi
R ∗

fi−1
R−1 where r is the alphabet size

If f1 = f2 = ... = fr, then R = string length = r * f. Then IC =
r∑

i=1

f(f−1)
rf(rf−1) = 1

r

r∑
i=1

f−1
rf−1 =

1
r
r(f−1)
rf−1 = f−1

rf−1 = 1
r

For a language on r characters with pi = Pr(char = ci), IC(language) =
r∑

i=1

p2i

This IC(english) ≈ 0.066
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September 7th
Hill Cipher (first cipher to have qualities of confusion and diffusion):
Idea of Hill cipher: [A=0,B=1,...,Z=25]

1. Pick an interger n>1

2. Construct M, and n x n matrix mod(26)

3. Break plaintext into strings of length n

4. Encrypt: If x = (x1, x2, ..., xn)← row vector
then e(x) ≡ x ∗M mod 26

5. Decrypt: If y = x ∗M mod 26 ... M must be invertible.
Then y ∗M−1 ≡ (x ∗M) ∗M−1 ≡ x(M ∗M−1) ≡ x ∗ I ≡ x mod 26
So M is invertible if and only if the determinate of M is an invertible integer mod 26
Note: I = M ∗M−1 → 1 = det(I) = det(M) ∗ det(M−1) mod 26
Therefore must have gcd(det(M), 26) = 1

Ex. GRINCH → (6 17)(8 13)(2 7)

M =

(
7 9
3 12

)GR

:
(

6 17
)( 7 9

3 12

)
≡
(

25 24
)

mod 26

IN
(

8 13
)( . .

. .

)
≡
(

17 20
)

mod 26

CH
(

2 7
)( . .

. .

)
≡
(

9 24
)

mod 26

Therefore GRINCH → ZYRUJY

Ex. HOWAREYOUTODAY
CT: ZESENIUSPLJVEU

Let M =

(
a b
c d

)
HO = (7 14)M ≡ (25 22) mod 26
WA = (22 0)M ≡ (18 4) mod 26

→
(

7 14
22 0

)(
a b
c d

)
≡
(

25 22
18 4

)
mod 26

det

(
7 14
22 0

)
= 7 ∗ 0− 22 ∗ 14 ≡ 4 mod 26 (Wont work)

5th pair: (u t) = (20 19)
(20 19)M ≡ (15 11) mod 26

→ 1st and 5th pair =

(
7 14
20 19

)(
a b
c d

)
≡
(

25 22
15 11

)
mod 26

∴

(
a b
c d

)
=

(
15 12
11 3

)

September 10th
Stream ciphers - An algorithm is used to generate a stream of key bits that are xored with the plaintext to
encrypt it. Decrypting is done by xoring the encrypted values with the same stream of key bits.

Linear Recurrences:

1. Pick a positive integer m

2. Initialize: pick

(a) Constants c0, c1, c2, ..., cm−1

(b) an m-length binary string (ki, ..., km)

4



3. Define zi [the output of the recurrence] by zi = ki for 1 ≤ i ≤ m and zi + m = c0zi + c1zi+1 + ... +
cm−1zi+m−1 for i ≥ 1. This is called a linear recursion recurrence

Ex. M = 4, zi+4 = zi + zi+1 mod 2
Every two bits gets exored together and appended to the end of the stream. The bits that are used are then
incremented by one and the process continues. The bits starts to repeat every 15 bits.
Ex. M = 7, You get 127 bits
Ex. M = 31, You get > 2 billion bits

Ex. M = 11, A = 01, T = 1, H = 0000 (Morris code) Plaintext: 110110000 Key: 011010111 Ciphertext:
101100111

Linear Feedback Shift Register (LFSRs):
|zi|zi+1|zi+2|zi+3| = |1|1|0|1| (Initial Fill)
|zi|zi+1| gets xored, shifted into the rightmost register. The output from the left gets xored with the message
to encrypt/decrypt.

If the degree [length of initial fill] is m, the period in a divisor (before repeats) is 2m − 1

September 12th
LFSR

1. A linear recurrence mod 2

2. Produces a keystream

3. Super fast!

Cryptoanalysis of LFSR:

Ex. Bitstream = 011010111...
Recurrence: zm+i ≡ c0zi + c1zi+1 + ...+ cm−1zi+m−1 mod 2
Test: m = 2, z = z2+i ≡ c0zi + c1z1+i mod 2
z1 = 0, z2 = 1, z3 = 1 = c0z1 + c1z2 = c0 × 0 + c1 × 1→ c1 = 1
No solution for c0, c1 = 1
0 ≡ z4 ≡ c0z2 + c1z3 ≡ c0 × 1 + c1 × 1→ c0 = 1
1 = z5 = z3 + z4 = 1 + 0 = 1
0 = z6 = z4 + z5 = 0 + 1 = 1 Thus m 6= 2

Test: m = 3, c0z1 + c1z2 + c2z3 = z4
c0z2 + c1z3 + c2z4 = z5
c0z3 + c1z4 + c2z5 = z6

Rewriten as matrix: z1 z2 z3
z2 z3 z4
z3 z4 z5

 c0
c1
c2

 =

 z4
z5
z6

→
 0 1 1

1 1 0
1 0 1

 c0
c1
c2

 =

 0
1
0


Thus m 6= 3 as the matrix is not invertible

If m = 4, the matrix is invertible

The main LFSR theorem: Let M =

 z1 ... zm
z2 ... zm+1

zm ... z2m−1

 with z1, ..., z2m−1 bits

1. If z1, ..., z2m−1, satisfies linear recurrence of order < m, then det(M) ≡ 0 mod z

2. OTOH if z1, ..., z2m−1 satisfies a linear recursion of order m and detM ≡ 0 mod z, then z1, ..., z2m−1
satisfies a linear recursion of order < m

In summary: M is invertible mod z ⇔ z1, ..., z2m−1 satisfies no linear recurrence of length < m
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Another example: suppose zi, ... satisfies zi+3 = c0zi + c1zi+1 + c2zi+2 mod 2
z1 z2 z3 z4 = c0z1 + c1z2 + c2z3
z2 z3 z4 z5 = c0z2 + c1z3 + c2z4
z3 z4 z5 z6 = c0z3 + c1z4 + c2z5
z4 z5 z6 z7 = c0z4 + c1z5 + c2z6



Last column:


z4
z5
z6
z7

− c0


z1
z2
z3
z4

− c1


z2
z3
z4
z5

− c2


z3
z4
z5
z6

 =


0
0
0
0


∴ the determinate of the above matrix is 0 as the last column is a linear combination of the first 3 columns

September 19th
Permutation on a set χ is a map alpha : χ→ X that is one to one and onto.

Two notations:

1. The 2 row form: α =

(
1 2 3 4 5
3 4 1 2 5

)
2. The cycle decomposition: α = (13)(24)(31)(42)(55)
β = (12453)
α ◦ β = (13)(24)(31)(42)(55) ◦ (12453) = (145)(2)(3)

September 21st
Review: A,B,C,D,E,F are the first six enigma permutations for a given daily setting. The permutations D*A
E*B and F*C are independent of the plaintext.
Signature of a setting = cycle structure of D*A, E*B, F*C
Permutation: 1-1 map of a set onto itself
Permutations are invertible

Two row permutation: Let π =

(
1 2 3 4 5 6 7 8 9 10
7 9 3 10 4 1 6 5 8 2

)
π = (2 9 8 5 4 10)(1 7 6)(3) (3 disjoint cycles)
σ = (1 5 3 6 2)(4 7 8)(9 10)
πσ = (2 9 8 4 3 10)(1 76)(3)(1 5 3 6 2)(4 7 8)(9 10) = (4 6 9 2 7 5 3 1)(10 8)
*Read from right to left
σπ = (1 8 3 6 5 7 2 10)(4 9)
Q: Do αβ have the same cycle structure?
Inverses: Given n f : X → Y is 1-1 and onto, define f−1 : Y → X by f−1(r) = s, where f(s) = r

Let γ =

(
1 2 ... n

γ(1) γ(2) ... γ(n)

)
. Then γ−1 =

(
γ(1) γ(2) ... γ(n)

1 2 ... n

)
Conjugacy: Let α and β be permutations. Then αβα−1 is called the α conjugate of β
β = (3 5 1)(2 4), α = (1)(2 3 4 5)
αβα−1 = (1)(2 3 4 5)(3 5 1)(2 4)(5 4 3 2)(1)=(1 4 2)(3 5)
Note: same cycle structure of β
Theorem: If α and β are permutations, then β and αβα−1 have the same cycle structure.
Proof: We begin with a lennma.
If α and β are permuations, and β maps i to j, then αβα−1 maps α(i) to α(j)
Proof 1) αβα−1(α(i)) = α(β(α−1(α(i)))) = α(β(i)) = α(j)
Proof of theorem: Suppose (a1, a2, ..., ar) in a cycle of β, Then αβα−1 takes α(a1) to α(a2), thus αβα−1 in
short (a1, a2, ..., ar) is a cycle of αβα−1

The signature theorem: The signature of an enigma setting is independent of the plugboard.
Proof: ...
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September 24th
Rejewshes

The shape of D◦A (its cycle structure) is independent of the plug board. If A = S◦α◦S and D = S◦δ◦S
α is first setting without the plugboard, because S is its own inverse, we have D ◦A = S ◦ δ ◦S ◦S ◦α ◦S =
S ◦ (δ ◦ α) ◦ S = S ◦ (δ ◦ α) ◦ S−1.

Theorem: Let α and β be permutations on 1,...,2n that are each a product of n disjoint 2-cycles. Then
every cycle length in the cycle decomposition of β ◦ α occurs an even number of times.

Ex. n = 4, # of perms = 4! = 24
Of this type: 1-1: (1)(2)(3)(4) = identity = 1 2-2: (12)(34)—(13)(24)—(14)(23) = 3 ∃ 4 such – Proof by
induction: TPIBI on n ≥ 1
Base case: n = 2, α = (12) = β, βα = (1)(2)
Th. Let n be an int > 1 and spse them is true for all k, 1 ≤ k < n. Finish. Let α and β be so in the
statement of theorem.

Ex. α = (1 5)(2 7)(3 10)(4 9)(8 6)
β = (1 4)(7 10)(2 5)(8 3)(9 6)
β ◦ α = (1 2 10 8 9)(7 5 4 6 3)

If we know that α and β are perms, and β sends i to j then α = σβσ−1 sends σ(i) to σ(j).
ie. if (a1, a2, ..., ar) is a cycle of β, then (σ(a1), σ(a2), ..., σ(ar)) is a cycle of α = σβσ−1. Also if α and β
have the same cycle type, then they are conjugates.

ex. β = (1 3 5)(2 4)
α = (2 5 3)(1 4)
For any σ, we have σβσ−1 = (σ(1)σ(3)σ(5))(σ(2)σ(4)) = (2 5 3)(1 4)
σ(1) = 2, σ(3) = 5, σ(5) = 3, σ(2) = 1, σ(4) = 4
σ = (1 2)(3 5)(4)
σβσ−1 = (1 2)(3 5)(4)(1 3 5)(2 4)(4)(3 5)(1 2) = (1 4)(2 5 3) = α

September 26th

σ = (1 7 4)(5 8 9 2)(6 3) and τστ−1 = (5 6 3)(1 4 2 7)(8 9)
If σ sends i to j, then τστ−1 sends τ(i) to τ(j)
(τ(1) = 5, τ(7) = 6, τ(4) = 3)(τ(5) = 1, τ(8) = 4, τ(9) = 2, τ(2) = 7)(τ(6) = 8, τ(3) = 9)
This results in τ = (1 5)(7 6 8 4 3 9 2)
To find another possible value of τ , map τ to another value in the same cycle

Vernam Cipher (one time pad)
————————————
Eve gets to look at come ciphertext. What can she learn about the key?
Security:

• Computational - The ciphertext has no information on the key

• Provable - Can the key be verified to be correct

• Unconditional -

X is an experiment [aka random variable] with outcomes in some finite set X
An event is a subset of the X.
If x and y are outcomes, write Pr(X) = x or Pr(x) to mean (# successes/# trials).
Pr(x, y) = probability that both x and y happen.
Mutual exclusivity: Pr(x, y) = Pr(x)Pr(y)
Independent and mutual exclusivity are not the same!

September 28th
Review for Exam 1:
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Classical cryptosystems: Shift, Affine, Monoalphabetic Substitution, Polyalphabetic Substitution, Vi-
genere, Hill (Block), Linear Feedback Shift Register (Stream), Enigma

Mathematica topics: Congruences, Modular Arithmetic, Solving Linear Equations (ax + by = d in inte-
gers), GCD and Euclid’s Alg, Extended GCD, Inversion (mod n), Matrix Inversion, Permutations, Conjugary,
Eulerφ function

Cryptoanalytics: Frequency Analysis, Mono/Di/Trigraphs, Kasiski Test (Viginare), Index of Coincidence,
Finding Linear Recursions from a Bit Stream

October 3rd
Entropy - Let X be an experiment also known as a random variable, with outcome probabilities p1, ..., pn.
H is a function that satisfies four properties.

1. For all p1, ..., pn with pi ≥ 0 and p1 + ...+ pn = 1, H(p1, ..., pn) is a non-negative real number.

2. H is contiguous in each variable.

3. H( 1
n , ...,

1
n ) < H( 1

n+1 , ...,
1

n+1 ) thus n terms < n+ 1 terms.

H( 1
2 ,

1
2 ) < H( 1

3 ,
1
3 ,

1
3 )

4. If 0 < g < 1, then H(p1, ..., pi, qpi, (1− q)pi, pi+1, ..., pn) = H(p1, ...pi, ...pn) + piH(q, 1− q)
Ex 1. x1 = ’odd’, x2 = ’even’, y1 = ’2’, y2 = ’4 or 6’ - a fair die.
H( 1

2 ,
1
2 )

{x1, y1, y2} ← H( 1
2 ,

1
6 ,

1
3 ) by (4)

H( 1
2 ,

1
6 ,

1
3 ) = H( 1

2 ,
1
2 ) + 1

2H( 1
3 ,

2
5 )

What’s H?
H( 1

2 ,
1
2 ) vs H( 1

4 ,
1
4 ,

1
4 ,

1
4 )

H( 1
4 ,

1
4 ,

1
4 ,

1
4 ) : H( 1

2 ,
1
4 ,

1
4 ) = 1

2H( 1
2 ,

1
2 ) +H( 1

2 ,
1
2 )

H( 1
4 ,

1
4 ,

1
4 ,

1
4 ) = H( 1

2 ,
1
4 ,

1
4 ) + 1

2H( 1
2 ,

1
2 )

H( 1
4 ,

1
4 ,

1
4 ,

1
4 ) = H( 1

2 ,
1
2 ) + 1

2H( 1
2 ,

1
2 ) + 1

2H( 1
2 ,

1
2 )

So H( 1
4 ,

1
4 ,

1
4 ,

1
4 ) = 2H( 1

2 ,
1
2 )

H( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) = 3H( 1

2 ,
1
2 )

H( 1
2n , ...,

1
2n ) = nH( 1

2 ,
1
2 )

H( 1
3n , ...,

1
3n ) = nH( 1

3 ,
1
3 ,

1
3 )

Define A(k) = H( 1
k , ...,

1
k )

A(3n) = nA(3)
A(6) = A(2 ∗ 3) = 2A(3) = A(3 ∗ 2) = 3A(2)
A(6) = A(3) +A(3)
A(15) = A(5) +A(5) +A(5)

Thml: If H(X) satisfies prop’s (1-4), for all X, then if x1, ..., xn are outcomes with probabilities p1, ..., pn,

then H(p1, ..., pn) = −λ
n∑

i=1

pi log(pi) where pi 6= 0 for some positive constant λ.

October 5th
Def. Let X be an experiment with outcomes in a set (also called X) and associated prob distribution.
Then H(X) = −

∑
x∈X

Pr(x) log2(Pr(x)), P r(x) > 0. H(X) is the expected value of −log2(Pr(x)) But

lim
x→0

x logb(x) = 0

What is the expected # of guesses needed to determine a particular #, about which you only know its range
- S’?
Example S’ = {0,1,2,3,4,5,6,7}

Q: Is n $>$ 3?

Yes (1) - Is n $>$ 5?

Yes (1) - Is n $>$ 6?

Yes (1) - Answer is 7 (111)
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No (0) - Answer is 6 (110)

No (0) - Is n $>$ 4?

Yes (1) - Answer is 5 (101)

No (0) - Answer is 4 (100)

No (0) - Is n $>$ 1?

Yes (1) - Is n $>$ 2?

Yes (1) - Answer is 3 (011)

No (0) - Answer is 2 (010)

No (0) - is n $>$ 0?

Yes (1) - Answer is 1 (001)

No (0) - Answer is 0 (000)

Let x ∈ {0, 1, 2, ..., 7}, and let Pr(x) = 1
8

Then E = −
7∑

x=0
Pr(x) log2(Pr(x)) = −

7∑
x=0

1
8 log2

1
8 = −8( 1

8 ) log2( 1
8 ) = − log2(2−3) = −(−3) log2(2) = 3

What is the expected # of guesses needed to determine the exact number of heads in the following
experiment: we flip two fair (distinguishable) coins.
Pr(0 heads) = 1

4 , Pr(1 heads) = 1
2 , Pr(2 heads) = 1

4
Are they the same?

Q: Are they the same?

Yes (1/2) - Is there a head?

Yes - Answer is 2 heads

No - Answer is 0 heads

No (1/2) - Answer is 1 head

Answer = 3
2

Pr(0) log2(Pr(0)) +Pr(1) log2(Pr(1)) +Pr(2) log2(Pr(2)) = 1
4 log2( 1

4 ) + 1
2 log2( 1

2 ) + 1
4 log2( 1

4 ) = 1
4 log2(4) +

1
2 log2(2) + 1

4 log2(4) = 2
4 + 1

2 + 2
4 = 3

2

October 8th
PSet6 Problem 3:
H(X) = H( 1

2 ,
1
2 ) + 1

2H( 1
28 , ...,

1
28 ) + 1

2H( 1
232−28 , ...,

1
232−28 )

where H( 1
n , ...,

1
n ) =

n∑
x=1

Pr(x) log2(Pr(x)) = −n ∗ 1
n ∗ log( 1

n ) = log2 n

Eve gets to see some ciphertext. How much does she know about the plaintext than when she did not
observe the ciphertext?
Conditional Entropy: Given two experiments X and Y, define H(Y |X) :=

∑
X

(Pr(X = x)H(Y |X = x)) =∑
x∈X

Pr(x)
∑
y∈Y

(Pr(y|x) log2 Pr(y|x)). Recall Pr(y|x) =
Pr(y, x)

Pr(x)
. So Pr(y|x) Pr(x) = Pr(y, x). ThusH(Y |X) =

−
∑

x∈Xy∈Y
Pr(x) Pr(y|x) log2 Pr(y|x) = −

∑
x∈Xy∈Y

Pr(y, x) log2 Pr(y|x)

A cryptosystem has perfect secrecy provided H(P |C) = H(P ).

October 10th
Huffman Encoding - Begin with an experiment X with outcomes and probabilities.
0.5 a ↔ 00
0.3 b ↔ 01
0.1 c ↔ 10
0.1 d ↔ 11

Write down outcomes together with their probabilities.
Pick the two outcomes with the smallest probabilities, assign 1 to one of them and 0 to the other.
c → 1, d → 0
Combine the two event outcomes into one, with the probability = sum of the two previous.

9



c/d → 1, b → 0
b/c/d → 0, a → 1
Repeat till only one outcome.
Encode each outcome by writing the bits in reverse order from final outcome to initial outcome.
a → 1, b → 00, c → 011, d→ 010
L = expected length of bit (encoding) string for the outcomes = avg. # of bits = 0.5(1)+0.3(2)+0.1(3)+0.1(3)
= 1.7 < 2
Entropy H(X) = −(0.5 log2 0.5 + 0.3 log2 0.3 + 0.2 log2 0.1) ≈ 1.685
L is bounded on the lower end by the entropy and upper end by entropy + 1.

The entropy of English:
Random characters (26) = log2(26) ≈ 4.7
Random character w/ space = log2(27) ≈ 4.75
Monographic distribution ≈ 4.18
Digraphs = H(x|x−1) ≈ 3.56
Trigraphs = H(x|x−12) ≈ 3.3

If LN = probability distribution of N graphs, then H(English) = lim
N→∞

H(LN )
N

October 15th
Coding vs crypto - error (detect/correct) codes - sending message over noisy networks (crypto sends over
nosy networks)
Detecting errors - codeword = message + check
Possibilities:
1. duplicate message – (1011) + (1011) = (10111011)
2. parity check – (1011) + xor(1011) = (1011) + (1) (append a bit to make # of 1s even)
Correcting errors - harder than detecting
1. Triplication - message bit = x, code word = xxx
An (n,k) code is a code with codewords of length n and messages of length k

October 17th
Practical error correction
Terminology
Code = strings from an alphabet (all of the same length)
An (n,k) code is a code in which the code words have length n and there are k message characters.

The data rate per bit for an (n,k) code C [over {0,1}] with w codewords in all - is defined by r = log2(w)
n

For an (n,n) code, the data rate d = log2(2
n)

n = 1 (no error correction)

Triplication code: a (3,1) code - M = 0, send 000, M = 1, send 111. n = 3, w = 2 so r = log2(2)
3 = 1

3
The 2x2 code: the code word is a string of 8 bits (x1, x2, ..., x8) where bits 1, 2, 4, and 5 are message bits,

bit 3 = 1 xor 2, bit 6 = 4 xor 5. The bits received (y1, y2, ..., y3) are put into an array
y1 y2 y3
y4 y5 y6
y7 y8

A = y1 + y2 + y3
B = y4 + y5 + y6
C = y1 + y4 + y7
D = y2 + y5 + y8

Wrong bits (pairs) Error bit
A,C y1
B,D y5
A,D y2
B,C y4

10



Wrong bits (single)
A B C D
y3 y6 y7 y8

data rate: n = 8, k = 4, w = 24, therefore r = log2(2
4)

8 = 1
2

Efficient encoding: code = block of 7 bits x1 to x7 where x3, x5, x6, x7 are message bits.
Choose x4 to make α = x4 + x5 + x6 + x7 = 0 (mod 2).
Choose x2 to make β = x2 + x3 + x6 + x7 = 0 (mod 2)
Choose x1 to make γ = x1 + x3 + x5 + x7 = 0 (mod 2).

Blocks received, compute α, β, γ.
Read αβγ as a binary integer j.
j = subscript such that xj is incorrect if j = 1, ..., 7.
If j = 0, then there are no errors.

Let (x1x2x3x4x5x6x7) = 1111101,
(
x1 x2 x3 x4 x5 x6 x7

)


0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


= 110

Thus error in bit 6.
β = 010, 011, 110, 111 (second bit is 1)
α = 110, 101, 110, 111 (first bit is 1)

October 19th
Hamming distance - defection and connection
The Hamming (7,4) code - another look
The Hadamard Code - Let x,y be strings of the same length. H(x,y), the hamming distance between x and
y is defined to be the number of positions at which x and y differ.
Ex. let x = 1001100 and y = 0101011. H(x,y) = 5

Binary: weight of x = # of 1s = # of non-0 bits
If x and y are bit strings, then H(x,y) = weight of xored strings

Theorem: Let C be a code with minimum distance d between code words. Then
a) C can detect up to d-1 errors
b) C can correct up to (d-1)/2 errors

Hamming Code: 4 message bits, 3 parity bits - send 7 bits
Hadamard Code: 6 message bits, 26 parity bits - send 32 bits
data rate = log2(26)/32 = 6/32

October 22nd
Hadamard Code (32,6) code, length = 32 bits, message = 6 bits.
More generally, (2n,n+1) codes
(32,6) corrects up to 7 errors.
(16,5) corrects up to 3 errors.
(2n,n+1) corrects up to 2n−2 − 1 errors.

For the (16,5) code: messages are the 32 integers with a binary representation of no more than 5 bits.

Two matrices of interest: a generating matrix G (produces the codeword), a parity check matrix P. G is a
4x16 matrix, with the columns numbered j = 0,...,15. The jth column is the 4 bit representation of j. That is,

11



if j = 8j3 + 4j2 + 2j1 + j0, then the jth column of G is


j3
j2
j1
j0

 Thus G =


0 0 0 ... 1 1 1
0 0 0 ... 1 1 1
0 0 1 ... 0 1 1
0 1 0 ... 1 0 1
... ... ... ... ... ... ...
0 1 0 ... 13 14 15


let x = x4 + x3 + x2 + x1 + x0 be a 5 bit message word.
To encode x:

1. Form xx = (x3, x2, x1, x0)

2. Form the 16 long vector y = x∗ ∗G mod 2 = (y1, ..., y15)

3. For 1 < i < 16, set zi = (−1)yi

For 26 = 11010, x∗ = (1,0,1,0)
x∗ ∗G = (0, 0, 1, 1, ...)

4. Set z = (z1, ...z16) if x4 = 0 (ie. if 0 ≤ x ≤ 15) = (−z1, ...,−z16) if x4 = 1 (ie. if 16 ≤ x ≤ 31) where z
is the encoding of x

To decode, form the parity check matrix P, a 16x16 (-1,1) matrix whose jth row is the encoding of j, for
0 ≤ j ≤ 15.
Let w be a 16-long vector of 1s and -1s. Form w * P.

# of errors Range for all dot Range for the Can determine

products but 1 ‘‘right’’ one correct message?

0 0 16 or -16 Yes

1 -2 to 2 14 to 16 or -14 to -16 Yes

2 -4 to 4 12 to 16 or -12 to -16 Yes

3 -6 to 6 10 to 16 or -10 to -16 Yes

4 -8 to 8 8 to 16 or -8 to -16 No

Can detect up to 7 errors but correct up to 3 errors.

Constructing parity check matrix for Hadamard codes

H1 =

(
1 1
1 −1

)
: H1 ∗Ht

1 =

(
2 0
0 2

)
= 2I2

H2 =

(
H1 H1

H1 H1

)
: H2 ∗Ht

2 = 4I4

H3 =

(
H2 H2

H2 H2

)
8x8

: ...

H4 =

(
H3 H3

H3 H3

)
: ... = P

1001100 is a codeword in (7,4)
Each codeword is 1 away from seven non-codewords.

October 24th
A q-ary code is a code that uses a set of q characters
Def 1. Let C be a code [ie, a set of vectors of fixed length] over a character set of q characters. Let w be a
code word and t ∈ {0, 1, ...}
The sphere B(w, t) of radius t about the word w is defined by B(w, t) = {strings s|H(w, s) ≤ t}

Prop 1. Let C be a code of length n and let w be a codeword. Then |B(w, t)| = 1 +

(
n
1

)
(q − 1) +(

n
2

)
(q − 1)2 + ...+

(
n
t

)
(q − 1)t.

12



B(w, t) contains 1 string s: H(s, w) = 0→ s = w

# of strings with H(s, w) = 1 =

(
n
1

)
∗ (q − 1).

# of strings with H(s, w) = 2? ∃
(
n
2

)
pair of positions to alter, each having (q− 1)2 ways of altering each

pair.

Th. (Sphere Packing Bound/Hamming Bound) - If C is a q-ary code of length n, and minimum dis-
tance d, and if t is a positive integer such that d ≥ 2t+1, then the number M of code words satisfies

M ≤ qn

t∑
j=0

(
n
j

)
(q − 1)j

.

Proof. Because d ≥ 2t+1, t ≤ x(d− 1)/2y, and so this code can correct as many as t errors.
If w1 and w2 are distinct codewords, then B(w1, t) and B(w2, t) do not overlap. Therefore if there are M

codewords, then there are at least M ∗
t∑

j=0

(
n
j

)
(q − 1)j strings in the code. But the number of strings in

the space = qn. Therefore M ∗
t∑

j=0

(
n
j

)
(q − 1)j ≤ qn.

Def 1. If a q-ary code of length n with M codewords satisfies the Hamming bound with equality, that
code is called perfect.

Claim: The Hamming (7,4) code is perfect.
Proof: We have q=2, n= 7, and d = 3. Each sphere about a code word of radius x(d − 1)/2y = 1 has
1∑

j=0

(
7
j

)
(2− 1)j = 1 + 7 = 8 strings. 16 = M ≤ qn∑ = 27

1+7 = 24 = 16.

The (15,11) Hamming code is also perfect. The parity bits are 1,2,4,8.
1 = 1 + 3 + ... + 15 == 0
2 = 2 + 3 + 6 + 7 + ... == 0
4 = 4 + 5 + 6 + 7 + 12 + 13 + 14 + 15 == 0
8 = 8 + 9 + 10 + ... + 15 == 0

n = 15, d = 3, thus M ∗
1∑

j=0

(
15
j

)
(2− 1)j ≤ 215 Thus M ≤ 215

1+15 = 215−4 = 211.

October 29th
PSet9 3a) Binary perfect 2-error correcting code of length n.

# of code words: M ∗
t∑

j=0

(
n
j

)
(q − 1)j = qn

q = 2, t = 2, we have M(1 + n+ n(n−1)
2 ) = 2n

Therefore 1 + n+ n(n−1)
2 ) = 2n is a power of 2, say 2k. Then n2−n

2 + n+ 1 = 2k ⇒ n2 + n+ 2 = 2k+1

n2 +n+(2−2k+1) = 0 (quadratic equation). So n = 1
2 (−1+

√
12 − 4(1)(2− 2k+1)) = 1

2 (−1+
√
−7 + 2k+3).

Therefore 2k+3 − 7 is a square.

SPN - substitution permutation network - a crypto system that is broken up into units and run through
a substitution box (s-box) then a permutation.
Our network: PT is 16 bits = four 4-bit strings. Key (K) is 32 bits = eight 4-bit strings. The 4-bit strings
are the blocks.
Round: from previous round, you have a 16 bit string on hand which is derived somehow from the PT.
Round j: string on hand is called wj−1[j = 1, w0 = PT ] Take wj−1 ⊕Kj and call this uj [Kj is a “round
key” of 16 bits, derived from the 32 bit key..]

Substitution: Take uj and run it through the s-boxes. Call the result vj .

Permutation: Take vj and

1. Write it into a 4x4 array of bits, one row at a time.

2. Read it out by columns. Call this wj .
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3. Take wj ⊕Kj+1 = uj+1

Exceptions: First round: x = PT, w0 = x = PT, then u1 = w0 ⊕K1

Last round: do not perform the permutation.

PT

\xor K

------------------

Round 1 S

P

\xor K

------------------

Round 2 S

P

\xor K

------------------

Round 3 S

P

\xor K

------------------

Round 4 S

\xor K

Sequence of events for encryption:
K,S,P,K,S,P,K,S,P,K,S,K

Sequence of events for decryption:
K,S,K,P,S,K,P,S,K,P,S,K
The above pairs is equivalent

abc def ghi →
a b c
d e f
g h i

→ adg beh cfi →
a d g
b e h
c f i

→ abc def ghi

Key = 32 bits = D1D2D3D4D5D6D7D8 where Di is a block of 4 bits.
K1 = D1D2D3D4

K2 = D2D3D4D5

K3 = D3D4D5D6

K4 = D4D5D6D7

K5 = D5D6D7D8

Think of a 4-bit block as a hexadecimal number from 0-F.
Each s-box looks like this permutation: (0,E)(1,4,2,D,9,A,6,B,C,5,F,7,8,3)
Ex. 0110 1011 0010 1110 (4 blocks) = 6 B 2 E → B C D 0 (after permutation) = 1011 1100 1101 0000

B1 + Perm:

1 0 1 1
1 1 0 0
1 1 0 1
0 0 0 0

⇒ 1110 0110 1000 1010 (columns)

October 31st
16-bit PT, 32-bit Key K
PT ⊕K1

--- Round 1 ---

S-Boxes

Bit Permutation

\xor K^2

---------------
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--- Round 2 ---

S-Boxes

Bit Permutation

\xor K^3

---------------

--- Round 3 ---

S-Boxes

Bit Permutation

\xor K^4

---------------

--- Round 4 ---

S-Boxes

\xor K^5 = CT

---------------

S-box:
0 1 2 3 4 5 6 7 8 9 A B C D E F
E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Bit permutation: x1x2...x16
Write this by columns in a 4x4 array and read it out by rows.

K = B1B2B3B4...B8

K1 = B1B2B3B4

K2 = B2B3B4B5

K3 = B3B4B5B6

K4 = B4B5B6B7

K5 = B5B6B7B8

Ex. PT = B A 5 6, K = 7 9 E 1 C D 3 4
K1 = 7 9 E 1
etc..

Decryption uses S-box derived from old S-box.
BitPerm “ “ “ BitPerm ⊕ K, key derived from round key S.

New S-box = S−1, the inverse substitution of the original.
Given a, with b = bit permutation of a P(a), and c = Ki⊕ b.
Want to write this: start with C, do a bit perm P’(C), P’ related to P. Follow that with an xor with Li,
related to Ki.

November 2nd
Encrypt: PT → K1 ⊕ PT = a
Round 1: a→ S1(a) = b, b→ P (b) = c, c→ K2 ⊕ c = d
Round 2: d→ S1(d) = e, e→ P (e) = f, f → K2 ⊕ f = g
Last round: S,⊕

Decrypt:
Specific to one round:
e→ S−1(e) = d
d→ P ∗(d) = c∗

c∗ → L4 ⊕ c∗ = b
so P ∗(d)⊕ L4 = b.
∴ P (b) = P (P ∗(d)⊕ L4), P (b)⊕K4 = P (P ∗(d)⊕ L4)⊕K4 = d
What if P (x⊕ y) = P (x)⊕ P (y)? Then d = P (P ∗(d))⊕ P (L4)⊕K4.
Let P ∗ = P−1, the inverse of P and P (L4) = K4 ie. L4 = P−1(K4), then b = P−1(d)⊕ L4

x̄ = (x1, x2, ...xn)↔ x1, x2, ...xn (bit string)
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Ex. π =

(
1 2 3 4 5
4 3 5 1 2

)
π(x1, x2, x3, x4, x5) = (x4, x3, x5, x1, x2)

0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0




x1
x2
x3
x4
x5

 =


x4
x3
x5
x1
x2


If M is an n x m matrix and x̄, ȳ are n-dimensional vectors, then we know that M(x̄⊕ ȳ) = M(x̄) ⊕ M(ȳ)

Decrypt: Lj = P−1(Kj), S∗ = S−1, P ∗ = P−1

CT → CT ⊕L5 = w5, Lj = P−1(Kj)
→ S−1 → P−1 (=P, for the one in the book) → ⊕L4 = w4

w4 → S−1 → P−1 → ⊕L3 = w3 (Round 2)
w3 → S−1 → P−1 → ⊕L2 = w2 (Round 3)
w2 → S−1 → ⊕L1 = PT (Round 4)

November 5th
Crypto-analysis for the block cipher:
P (x⊕ y) = P (x)⊕ P (y) is linear, easily invertible.

Def: The bias of a function with outcomes {0,1} is defined by ε : Pr(X = 0)− 1
2 .

Look for inputs xi1, ..., xiu and outputs yj1, ..., yjv for which xi1 ⊕ ... ⊕ xiu ⊕ yj1 ⊕ ... ⊕ yjv = 0 has a bias
that’s “big”.

Let X1,X2 be random variables with outcomes in {0,1}. Set pi = Pr(Xi = 0); then Pr(Xi = 1) = 1− pi.
What is Pr(X1 ⊕ X2 = 0)?
Pr(X1 = 0,X2 = 0) + Pr(X1 = 1,X2 = 1) = P1 ∗ P2 + (1 − P1)(1 − P2). Substitute Pi = 1

2 + εi =
( 1
2 +ε1)( 1

2 +ε2)+( 1
2−ε1)( 1

2−ε2) = 1
4 +ε1ε2+ 1

2 (ε1+ε2)+ 1
4 +ε1ε2− 1

2 (ε1+ε2) = 1
2 +2ε1ε2 = Pr(X1⊕X2 = 0).

∴ Bias (ε1,2) for X1 ⊕X2 = 2ε1ε2.

Pr(X1 ⊕X2 ⊕X3 = 0) = Pr((X1 ⊕X2)⊕X3 = 0) = 1
2 + 2(ε1, ε2)(ε3) = 1

2 + 2 ∗ 2ε1ε2ε3.
∴ ε1,2,3 = 22ε1ε2ε3

The Piling-up Lennma: If x1, ..., xn are independent r.vs with biases ε1, ..., εn, then the biases of x1 ⊕
...⊕ xn is equal to 2n−1ε1, ..., εn.

November 7th
Pr(X1 ⊕X3 ⊕X4 ⊕ Y2 = 0) = 12

16 , bias = 1
4

Deduce a statement of the form Pi1⊕Pi2⊕ ...⊕Pir⊕Cj1⊕ ...⊕Cjs⊕Kl1⊕ ...⊕Klt = 0 where Kl1⊕ ...⊕Klt

is fixed.

ui,j = jth bit of the input to the ith round of the S-box.
vi,j = jth bit of the output of the ith round of the S-box.

ith round Si = 4 nibble Si,1, Si,2, Si,3, Si,4

We know that v1,6 ⊕ u1,5 ⊕ u1,7 ⊕ u1,8 = 0 with p = 12
16 ,
∑

= 1
4

v1,6 ⊕ (P5 ⊕K1,5)⊕ (⊕)⊕ (⊕) = 0 with p = 3
4 ,
∑

= 1
4
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November 9th
Midterm 2
Begins with permutations
Know how the enigma machine works
Entropy
Huffman encoding
Up through definition of bias

AES - 128bit input string, key ranges from 128, 256, 512 bits with 10, 12, and 14 rounds.

Fields with 2n elements.

November 12th
F4 = {0, 1, f, f + 1 where y + y = 0 for all y and f2 = f + 1}

K is a field. (K,+) is an abelian group, (K-{0},*) is an abelian group.
F4 ⊆ F8?
Lagranges Theorem. If G, H are finite groups and H ⊆ G, then |H| divides |G|.
(F4,+) has 4 elements
(F8,+) has 8 elements
(F4 − {0}, ∗) has 3 elements
(F8 − {0}, ∗) has 7 elements
Thus F4 * F8

F8 = {0, 1, g, g + 1, g2, g2 + 1, g2 + g, g2 + g + 1}
F8 = {a0 + a1g + a2g

2 where ai ∈ {0, 1}, g3 = g + 1}

f satisfies the polynomial equation in x2 + x+ 1 = 0
g satisfies the polynomial equation in x3 + x+ 1 = 0

F2[x] = {a0 + a1x+ ...+ anx
n where ai ∈ {0, 1}, n ∈ {0, 1, ...}}

Over R, x2 + x+ 1 = (x+ a)(x+ b)→ a+ b = 1, ab = 1, x =
−1±
√

12−4(1)(1)
2 = −1±

√
−3

2
F4 = F2[x] mod (x2 + x+ 1)

The AES field = F2[x] mod (x8 + x4 + x3 + x+ 1)

November 26th
Finite Fields
For p a prime, begin with Zp[x] = {a0 + a1x+ ...+ anx

n|ai ∈ Fp, n = 0, 1, 2, ...}
If (n,p) = 1, then Euclidean GCD algorithm ⇒ ∃a, b,∈ Z : an+ bp = 1
Read this as congruence mod p, we have an ≡ 1 mod p

Def: let a(x) ∈ Zp[x]
Then a(x) is irreducible provided

1. deg(a(x)) ≥ 1

2. if a(x) = d(x)e(x), for d(x), e(x) ∈ Zp[x], then either d(x) or e(x) is a constant 6= 0.

[ln Z5[x], 2x+ 1 = 2(x+ 3)]
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Let f(x) be a non zero poly. Then a(x) ≡ b(x) mod f(x) provided a(x)− b(x) is a multiple of f(x).
Division “works like” integer division. ie. Given f(x), g(x)(f(x) 6= 0), both in Zp[x],∃ unique q(x), r(x) ∈
Zp[x] : g(x) = q(x)f(x) + r(x) with deg(r) < deg(f) or r ≡ 0.

Example: find polynomial gcd x4 + 2x3 + x+ 1, x3 + x+ 1) over Z3[x].
x4 + 2x3 + x+ 1/x3 + x+ 1 = x+ 2 re −x2 − 2x− 1
x3 + x+ 1/− x2 − 2x− 1 = −x+ 2 re 4x
−x2 − 2x− 1/x = −x− 2 re −1

To construct a field with pr elements, where r > 1 and p is a prime:

1. Find an irreducible poly f(x) ∈ Fp[x] of degree r

2. The set {a0 + a1x+ ...+ ar−1x
r−1|ai ∈ Fp} is a field with pr elements.

Arithmetic is in Zp[x] mod f(x)

Ex. A field with 27 elements. Look for a poly of degree 3 = r that is irreducible over Z3[x].
f(x) = x3 + 2x+ 1 (irreducible)
F33 = {a0 + a1x+ a2x

2|ai ∈ Z3 and x3 + 2x+ 1 ≡ 0 mod f(x), x3 ≡ −2x− 1 mod f(x) ≡ x− 1 }
(1 + x2)(2 + x2) = 2 + 2x2 + x2 + x4 = 2 + x4 = 2 + x2 − x.(x3 = x− 1, x4 = x2 − x)
∴ (1 + x2)(2 + x2) = (2− x+ x2)

To find (a0 + a1x+ a2x
2)−1, do poly GCD extended on (a0 + a1x+ a2x

2, x3 + 2x+ 1).
1 = a(x)(2 + x2) + b(x)(x3 + 2 + 1)

November 28th
AES
PT → Add Key → [ Byte Sub → Shift Rows → Mix Columns → Add Key ] → Byte Sub → Shift Rows →
Add Key → CT
Run through the round [ ] 9 times with a new key each time.
Key = 128 bits

Bytes (block of 8 bits) have two identities:

1. They’re bit strings of length 8

2. They’re elements of a 256-eleemnt field F28

F28 = Z2[x] mod (x8 + x4 + x3 + x+ 1) (irreducible)
The byte a7a6a5a4a3a2a1a0 corresponds to the field element a7x

7 + a6x
6 + ...a1x+ a0 ∈ F28

PT = 128 long bit-string - read it as 16 byte. Load these bytes into a 4x4 matrix down the columns.

Thus b0b1...bEbF becomes


b0 b4 b8 bC
b1 b5 b9 bD
b2 b6 bA bE
b3 b7 bB bF


Sub Bytes: fore each byte y ∈M , define z by z = 0 if y = 0 or z = y−1 if y 6= 0.

∗y−1 in F28

y → Byte to Field → [Inverse] → z = y−1

z → Field to Vector → (z7, z6, ...z1, z0)

Multiply vector by matrix ... and add column vector.
y → S ∗ y−1 + cv mod 2 = Sub Bytes[y], S = large array, cv = constant vector

f(x) = x8 + x4 + x3 + x + 1, to find g(x)−1 in Z2[x] mod f(x), use Euclidean GCD algorithm to find
a(x), b(x) polynomial where a(x) ∗ f(x) + b(x) ∗ g(x) = 1. Thus a(x) ∗ 0 + b(x) ∗ g(x) ≡ 1 mod f(x).
b(x) ∗ g(x) ≡ 1 mod f(x).
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November 30th

M =


b0 b4 b8 bC
b1 b5 b9 bD
b2 b6 bA bE
b3 b7 bB bF


Shift Rows:



a0,0 a0,1 a0,2 a0,3
... ... ... ...
... ... ... ...
a3,0 a3,1 a3,2 a3,3


 =


a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a3,3 a2,1
a3,3 a3,0 a3,1 a3,2


Mix Columns: if S = state M + X

Mix Columns(S) = M * X, where M =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x


M is a 4x4 matrix over F28

Byte To Field (a7a6a5a4a3a2a1a0) = a7x
7 + a6x

6 + ...+ a1x+ a0 ∈ F28

Field To Byte (
7∑

i=1

bix
i = b7b6b5b4b3b2b1b0)

F28 = {a0 + a1x+ ...a7x
7|ai ∈ {0, 1} and x8 + x4 + x3 + x+ 1 = 0 or x8 = x4 + x3 + x+ 1}

Q: In F28 , what is x8?
A: Don’t know, look at F8, where I might find a clue: F8 = {0, 1, b, 1 + b, b2, 1 + b2, b+ b2, 1 + b+ b2}
b3 = b+ 1
b4 = b2 + b
b5 = b3 + b2 = b2 + b+ 1
b6 = b3 + b2 + b = b+ 1 + b2 + b = b2 + 1
b7 = 1
F8 = {0, b7, b5, b6, b4, b5}

In F28 , what’s x?
x8 + x4 + x3 + x+ 1 = 0
∴ x8 = −(x4 + x3 + x+ 1) = x4 + x3 + x+ 1 (since 2 = 0)
x9 = x5 + x4 + x2 + x
x10 = x6 + x5 + x3 + x2

x11 = x7 + x6 + x4 + x3

x12 = x8 + x7 + x5 + x4 = x4 + x3 + x+ 1 + x7 + x5 + x4 = x7 + x5 + x3 + x+ 1

Q: In F28 , what is x8?
A: I think I believe the derivation that x8 = x4 + x3 + x+ 1

Round key generation: Add Round Key:


s0,0 s0,1 s0,2 s0,3
... ... ... ...
... ... ... ...
s3,0 s3,1 s3,2 s3,3

⊕ current round key

Round keys are formed from the original key K = k0k1...kEkF

Form


k0 k4 k8 kC
k1 k5 k9 kD
k2 k6 kA kE
k3 k7 kk kF

 = [W (0),W (1),W (2),W (3)]

Oth round key is [W (0),W (1),W (2),W (3)].
To construct the jth round key [W (4j),W (4j+1),W (4j+2),W (4j+3)] do the following: (givenW (0), ...,W (i−
1))
W (i) = W (i− 1)⊕W (i− 4) if i is not a multiple of 4.

If i ≡ 0 (mod 4), write W (i− 1) =


a
b
c
d

;
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Then W (i) = W (i− 4)⊕


SubBytes(b)⊕ x i−4

4

SubBytes(c)
SubBytes(d)
SubBytes(a)



December 3rd
AES Decryption
SubBytes(SB) - ShiftRows(SR) - MixColumns(MC) - AddRoundKey(ARK)
Inverse of ARK is ARK (bytes are xored)
If X = Y ⊕K, then X ⊕K = Y ⊕ (K ⊕K) = Y .

Inverse of MC(S) = M ∗ S, where M =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

 ∈M4x4(F28):

Inverse of MC(S) isM−1∗S whereM−1 = inverse of M =


x3 + x2 + x x3 + x+ 1 x3 + x2 + 1 x3 + 1
x3 + 1 x3 + x2 + x x3 + x+ 1 x3 + x2 + 1

x3 + x2 + 1 x3 + 1 x3 + x2 + x x3 + x+ 1
x3 + x+ 1 x3 + x2 + 1 x3 + 1 x3 + x2 + x


(circulant)

Inverse of SR: InvSR(si,j)
3
i,j=0 =


s00 s01 s02 s03
s13 s10 s11 s12
s22 s23 s20 s21
s31 s32 s33 s30


Inverse of SB:
SB(S): For each byte y, define z := y−1 ∈ F28 (if y 6= 0), = 0 if y = 0.

Then w :=

1 0 0 0 1 1 1 1
.. .. .. .. .. .. .. ..
0 0 0 1 1 1 1 1

 •
z0...
z7

⊕



1
1
0
0
0
1
1
0


. M−1s =

0 0 1 0 0 1 0 1
.. .. .. .. .. .. .. ..
0 1 0 0 1 0 1 0

 (circulant)

Then y = z−1 if z 6= 0, y = 0 if z = 0

To decrypt: Let Rk(0),Rk(1),...,Rk(10) be the key schedule.
Begin with CT
Round 0: ARK(10),InvSR,InvSB
Round 1: ARK(9),InvMC,InvSR,InvSB
...
Round 9: ARK(1),InvMC,InvSR,InvSB
Round 10: ARK(0) → PT

December 5th
SDES
Message: 12 bits
Key: 9 bits = k1...k9
RKi = kiki+1...ki+7 w/ wrap around
Two s-boxes S1 and S2, each is a 2x8 table
If y1y2y3y4 is an input, y1 addresses a row and y2y3y4 addresses the column

Thus S =

0 1 2 3 4 5 6 7
0
1
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Ex. 1110 is the value in the second row, 6th column (output is a tribit)
Expander: Ex(b1b2b3b4b5b6) = b1b2b4b3b4b3b5b6

ith round: p1p2...p12→ Li−1 = p1...p6, Ri−1 = p7...p12
Li−1 ⊕ f(Ri−1,Ki) to get Ri, same with other half
f function: Exp(Ri−1) (8bits) ⊕Ki → x1x2..x8 → S1(x1x2x3x4)||S2(x5x6x7x8)→ ⊕Li−1 → Ri

If Ri−1 = p7..p12 then Exp(Ri−1) = p7p8p10p9p10p9p11p12 ⊕ kiki+1ki+2ki+3...ki+7 so S1(p7p8p10p9 ⊕
kiki+1ki+2ki+3)||S2(p10p9p11p12 ⊕ ki+4ki+5ki+6ki+7) = f(Ri−1,Ki

)

December 10th
Review for Final Exam

Chapter 1 - Traditional Crypto [shift, affine, substitution [mono-alphabetic (cryptograms), poly-alphabetic
(Vigenere)], stream cipher (LFSR), modular arithmetic, gcd algorithm, modular inversion, Kasiski test, IC,
frequency analysis, LFSRs - solving for recursion, ENIGMA permutation [composition, conjugacy], details
of the ENIGMA system, error correcting codes [encoding, decoding, Hamming distance, Hamming codes,
Hadamard codes]

Chapter 2 - Shannon’s information theory, entropy, Huffman encoding, one-time pads, probability, base
theorem

Chapter 3 - Block ciphers, hill cipher, SPNs, Sbox, key schedule, AES [implementation, subbytes,
shiftrows, mixcolumns], finite fields arithmetic, polynomial GCDs

In F8 = Z2[x] mod x3+x+1: (x2+x)(x2+x+1) = x4+x3+x2+x3+x2+x = x4+x ≡ x2 mod x3+x+1
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