MATH 4175 Notes

Kevin Lee

December 10, 2012

August 27th

Affine Cipher $e(\alpha=3 \alpha+5 \bmod 26)$

$$
\begin{array}{ccc}
1(A) & 8(H) & 8=3 * 1+5 \\
2(B) & 11(K) & 11=3 * 2+5
\end{array}
$$

$\forall x, \exists a: e(x)=a x+b \bmod n, d(y)=a^{-1}(y-b) \bmod n$
Here, $a=3, b=5, a^{-1}=9$.
This is because $d(w)=9 * 3=27 \equiv 1 \bmod 26=d(23)=9(23-5)=9 * 18=152=22 \bmod 26=V$ Affine cipher $\bmod (\mathrm{n})$ must satisfy $e(x)=a x+b \bmod n$, where a and n have no common divisor except 1

August 29th

Affine cipher example:

$F M X V E$	$D K A P H$	$F E R B N$	DKRXR	SREFM	ORUDS
$D K D V S$	$H V U F E$	$D K A P R$	KDLYE	VLRHHRH	

$e(x)=a x+b \bmod n$, where $\operatorname{gcd}(a, n)=1$
The $\#$ of these: if $n=26$, ans $=12$ (throw out even numbers and 13) $* 26=312$ (too many)
To solve, use frequency of letters:

$$
\begin{array}{ll}
R(8) & H(5) \\
D(7) & K(5)
\end{array}
$$

Let $e(E)=R=e(5)=5 a+b \bmod 26=18 \bmod 26$
Let $e(T)=D=e(20)=20 a+b \bmod 26=4 \bmod 26$

$$
\begin{align*}
& 4 \bmod 26=20 a+b \bmod 26 \tag{1}\\
& 18 \bmod 26=5 a+b \bmod 26 \tag{2}
\end{align*}
$$

Subtracting (2) from (1) results in $(-14 \bmod 26=15 a \bmod 26)$ or $(12 \bmod 26=15 a \bmod 26)$ As $15^{-1}=7,7 * 15 a \equiv 7 * 12 \bmod 26=6$ which wont work because $\operatorname{gcd}(6,26) \neq 1$

Instead of $e(T)=D$, Let $e(T)=K=20 a+b \bmod 26=11 \bmod 26$

$$
\begin{align*}
& 11 \quad \bmod 26=20 a+b \quad \bmod 26 \tag{3}\\
& 18 \quad \bmod 26=5 a+b \quad \bmod 26 \tag{4}
\end{align*}
$$

Subtracting (4) from (3) results in $(-7 \bmod 26=15 a \bmod 26)$ or $(19 \bmod 26=15 a \bmod 26)$

$$
15^{-1} \bmod 26=7
$$

7 comes from $(7 * 15=105=1+4 * 26 \equiv 1 \bmod 26)$
This becomes $7 * 15 a \equiv 7 * 19 \bmod 26$
Since $7 * 15=1 \bmod 26$, we have $a=133=3 \bmod 26$ and $e(x)=3 x+b$
We know that $5 a+b=18 \bmod 26$, thus b is 3 and $e(x)=3 x+3 \bmod 26$
if $e(\alpha)=a \alpha+b \bmod n$, then $d(\beta)=$ means solving for α in the congruence $a \alpha+b \equiv \beta \bmod n$ $d(\beta)=\alpha^{-1}(\beta-b)=\alpha^{-1}(\beta-3)=9(\beta-3) \bmod 26=9 \beta-27 \bmod 26 \equiv 9 \beta-1 \bmod 26$
$e(5)=18$, so $\mathrm{d}(18)=5$
$5=a^{-1}(18-3) \bmod 26$
$5 \equiv 9(15) \bmod 26$
Decoded solution:

$$
\begin{array}{cccccc}
\text { ALGOR } & \text { ITHMS } & \text { AREQU } & \text { ITEGE } & \text { NERAL } & \text { DEFIN } \\
\text { ITION } & \text { SOFAR } & \text { ITHME } & \text { TICPR } & \text { OCESSES } &
\end{array}
$$

So the question is, how to find the inverse of $a \bmod (\mathrm{n})$?

1. Find the GCD of a and n (use euclidean algorithm)

Euclid's observation: If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
2. From the GCD, calculate inverse

Ex. Find $G C D(118,267)$, find $118^{-1} \bmod 267$

$$
\begin{aligned}
267 & =2 * 118+31 \\
118 & =3 * 31+25 \\
31 & =1 * 25+6 \\
25 & =4 * 6+1 \\
6 & =6 * 1+0
\end{aligned}
$$

The last non-zero remainder is the GCD (1)
Write out the quotients bottom to top

	4	1	3	2
1	4	$4^{*} 1+1=5$	$5^{*} 3+4=19$	$19^{*} 2+5=43$
+	-	+	-	+

$1=25-4 * 6$
$1=25-4\left(31-1^{*} 25\right)$
$1=-4 * 31+5 * 25$
$1=-4^{*} 31+5\left(118-3^{*} 31\right)$
$1=5^{*} 118-19 * 31$
$1=5 * 118-19(267-2 * 118)$
$1=-19^{*} 267+43^{*} 118$ (43 is the inverse to 118 !)

August 31st

Ex. Find

$$
\begin{aligned}
482 & =2 * 216+50 \\
216 & =4 * 50+16 \\
50 & =3 * 16+2 \\
16 & =2 * 8+0
\end{aligned}
$$

Thus, the GCD is 2

```
2=50-3 * 16
2=50-3(216-4*50)
2= -3* 216+13* 50
2=-3*216+13(482-2* 216)
2=13* 482-29* 216
```

	3	4	2
1	3	13	29
+	-	+	-

Take the last two with the signs to get $2=13 * 482-29 * 216$
As a congruence of 482 , we have $2 \equiv-29 * 216 \bmod 482$, thus 216 is not invertible.
Suppose $\exists d: 216 d \equiv 1 \bmod 482$ but this is not possible.
Eulers (sounds like boilers)
For n is a positive integer, $\phi(n)=|a| 1 \leq a \leq \operatorname{nand} \operatorname{gcd}(a, n)=1 \mid$
$\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(4)=2, \phi(5)=4, \phi(p)=p-1, \phi\left(p^{2}\right)=p^{2}-p, \phi\left(p^{r}\right)=p^{r}-p^{r-1}$
$\phi(p q)=p q-q-p+1=(p-1)(q-1)$
If $(a, b)=1, \phi(a b)=\phi(a) \phi(b)$

September 3rd

1. Kerkhoffs Law - When designing a crypto system that is hard to break, you must always assume that the other party knows everything about the crypto system. The key determines the secrecy.
2. Shannon's Law of Diffusion - Changing one plain text character affects several cipher text characters and vice versa.
3. Shannon's Law of Confusion - The cipher text does not relate to the key in a simple way.

Polyalphabetic ciphers
Vigenère cipher
The key is a string of length n called the keyword.
Kasiski Test - Look for trigraphs or longer that repeat

September 5th

Vigenère cipher

- Determine monoalphabetic vs polyalphabetic
- Two ways to determine the key length

1. Kasiski Test
2. IC - The index of coincidence

The IC of a string of characters is the probability that two randomly chosen characters from the string are the same
If the alphabet has characters $c_{1}, c_{2}, c_{3}, \ldots, c_{r}$, then the answer to P_{r} (picking $2 c_{1}$'s) $+P_{r}$ (picking $2 c_{2}^{\prime}$'s $)+\ldots=\sum_{i=i}^{r} P_{r}\left(2 c_{i}^{\prime}\right.$'s $)$ where $P_{r}\left(2\right.$ char's $\left.c_{i}\right)=\frac{c_{i}}{\# \text { chars }} * \frac{\# c_{i}-1}{\# \text { chars }-1}$ where \# chars $=$ number of characters in the string
Let $f_{i}=$ \# of instances of $c_{i}, A N S\binom{f_{i}}{2}=\frac{f_{i}\left(f_{i}-1\right)}{2}$
Thus for a string of length $\mathrm{R}, \mathrm{IC}=\sum_{i=1}^{r} \frac{f_{i}}{R} * \frac{f_{i}-1}{R-1}$ where r is the alphabet size
If $f_{1}=f_{2}=\ldots=f_{r}$, then $\mathrm{R}=$ string length $=\mathrm{r}^{*}$ f. Then $\mathrm{IC}=\sum_{i=1}^{r} \frac{f(f-1)}{r f(r f-1)}=\frac{1}{r} \sum_{i=1}^{r} \frac{f-1}{r f-1}=$ $\frac{1}{r} \frac{r(f-1)}{r f-1}=\frac{f-1}{r f-1}=\frac{1}{r}$
For a language on r characters with $p_{i}=P_{r}\left(\operatorname{char}=c_{i}\right), \mathrm{IC}($ language $)=\sum_{i=1}^{r} p_{i}^{2}$
This $\mathrm{IC}($ english $) \approx 0.066$

September 7th

Hill Cipher (first cipher to have qualities of confusion and diffusion):
Idea of Hill cipher: $[A=0, B=1, \ldots, Z=25]$

1. Pick an interger $n>1$
2. Construct M , and $\mathrm{n} x \mathrm{n}$ matrix $\bmod (26)$
3. Break plaintext into strings of length n
4. Encrypt: If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leftarrow$ row vector then $e(x) \equiv x * M \bmod 26$
5. Decrypt: If $y=x * M \bmod 26 \ldots \mathrm{M}$ must be invertible.

Then $y * M^{-1} \equiv(x * M) * M^{-1} \equiv x\left(M * M^{-1}\right) \equiv x * I \equiv x \bmod 26$
So M is invertible if and only if the determinate of M is an invertible integer mod 26
Note: $I=M * M^{-1} \rightarrow 1=\operatorname{det}(I)=\operatorname{det}(M) * \operatorname{det}\left(M^{-1}\right) \bmod 26$
Therefore must have $\operatorname{gcd}(\operatorname{det}(\mathrm{M}), 26)=1$
Ex. GRINCH $\rightarrow\left(\begin{array}{ll}6 & 17)(813)(27)\end{array}\right.$

$$
\begin{aligned}
M=\left(\begin{array}{cc}
7 & 9 \\
3 & 12
\end{array}\right)^{G R}: & \left(\begin{array}{ll}
6 & 17
\end{array}\right)\left(\begin{array}{cc}
7 & 9 \\
3 & 12
\end{array}\right) \equiv\left(\begin{array}{ll}
25 & 24
\end{array}\right) \\
\operatorname{IN}\left(\begin{array}{ll}
8 & 13
\end{array}\right)\left(\begin{array}{ll}
. & . \\
. & .
\end{array}\right) \equiv\left(\begin{array}{ll}
17 & 20
\end{array}\right) & \bmod 26 \\
& C H\left(\begin{array}{ll}
2 & 7
\end{array}\right)\left(\begin{array}{ll}
. & . \\
. & .
\end{array}\right) \equiv\left(\begin{array}{ll}
9 & 24
\end{array}\right)
\end{aligned} \begin{aligned}
& \bmod 26
\end{aligned}
$$

Therefore GRINCH \rightarrow ZYRUJY

Ex. HOWAREYOUTODAY

CT: ZESENIUSPLJVEU
Let $\mathrm{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$\mathrm{HO}=(714) \mathrm{M} \equiv(2522) \bmod 26$
$\mathrm{WA}=(220) \mathrm{M} \equiv(184) \bmod 26$
$\rightarrow\left(\begin{array}{cc}7 & 14 \\ 22 & 0\end{array}\right)\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{cc}25 & 22 \\ 18 & 4\end{array}\right) \bmod 26$
$\operatorname{det}\left(\begin{array}{cc}7 & 14 \\ 22 & 0\end{array}\right)=7 * 0-22 * 14 \equiv 4 \bmod 26$ (Wont work)
5 th pair: $(\mathrm{u} t)=(2019)$
$(2019) \mathrm{M} \equiv(1511) \bmod 26$
\rightarrow 1st and 5th pair $=\left(\begin{array}{cc}7 & 14 \\ 20 & 19\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{cc}25 & 22 \\ 15 & 11\end{array}\right) \quad \bmod 26$
$\therefore\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}15 & 12 \\ 11 & 3\end{array}\right)$

September 10th

Stream ciphers - An algorithm is used to generate a stream of key bits that are xored with the plaintext to encrypt it. Decrypting is done by xoring the encrypted values with the same stream of key bits.

Linear Recurrences:

1. Pick a positive integer m
2. Initialize: pick
(a) Constants $c_{0}, c_{1}, c_{2}, \ldots, c_{m-1}$
(b) an m-length binary string $\left(k_{i}, \ldots, k_{m}\right)$
3. Define z_{i} [the output of the recurrence] by $z_{i}=k_{i}$ for $1 \leq i \leq m$ and $z_{i}+m=c_{0} z_{i}+c_{1} z_{i+1}+\ldots+$ $c_{m-1} z_{i+m-1}$ for $i \geq 1$. This is called a linear recursion recurrence

Ex. $\mathrm{M}=4, z_{i+4}=z_{i}+z_{i+1} \bmod 2$
Every two bits gets exored together and appended to the end of the stream. The bits that are used are then incremented by one and the process continues. The bits starts to repeat every 15 bits.
Ex. $\mathrm{M}=7$, You get 127 bits
Ex. $\mathrm{M}=31$, You get >2 billion bits
Ex. $\mathrm{M}=11, \mathrm{~A}=01, \mathrm{~T}=1, \mathrm{H}=0000$ (Morris code) Plaintext: 110110000 Key: 011010111 Ciphertext: 101100111

Linear Feedback Shift Register (LFSRs):
$\left|z_{i}\right| z_{i+1}\left|z_{i+2}\right| z_{i+3}|=|1| 1| 0|1|$ (Initial Fill)
$\left|z_{i}\right| z_{i+1} \mid$ gets xored, shifted into the rightmost register. The output from the left gets xored with the message to encrypt/decrypt.

If the degree [length of initial fill] is m, the period in a divisor (before repeats) is $2^{m}-1$

September 12th

LFSR

1. A linear recurrence $\bmod 2$
2. Produces a keystream
3. Super fast!

Cryptoanalysis of LFSR:
Ex. Bitstream $=011010111 \ldots$
Recurrence: $z_{m+i} \equiv c_{0} z_{i}+c_{1} z_{i+1}+\ldots+c_{m-1} z_{i+m-1} \bmod 2$
Test: $m=2, z=z_{2+i} \equiv c_{0} z_{i}+c_{1} z_{1+i} \bmod 2$
$z_{1}=0, z_{2}=1, z_{3}=1=c_{0} z_{1}+c_{1} z_{2}=c_{0} \times 0+c_{1} \times 1 \rightarrow c_{1}=1$
No solution for $c_{0}, c_{1}=1$
$0 \equiv z_{4} \equiv c_{0} z_{2}+c_{1} z_{3} \equiv c_{0} \times 1+c_{1} \times 1 \rightarrow c_{0}=1$
$1=z_{5}=z_{3}+z_{4}=1+0=1$
$0=z_{6}=z_{4}+z_{5}=0+1=1$ Thus $\mathrm{m} \neq 2$

$$
\text { Test: } m=3, c_{0} z_{1}+c_{1} z_{2}+c_{2} z_{3}=z_{4}
$$

$c_{0} z_{2}+c_{1} z_{3}+c_{2} z_{4}=z_{5}$
$c_{0} z_{3}+c_{1} z_{4}+c_{2} z_{5}=z_{6}$
Rewriten as matrix:

$$
\left[\begin{array}{lll}
z_{1} & z_{2} & z_{3} \\
z_{2} & z_{3} & z_{4} \\
z_{3} & z_{4} & z_{5}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
z_{4} \\
z_{5} \\
z_{6}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Thus $\mathrm{m} \neq 3$ as the matrix is not invertible
If $\mathrm{m}=4$, the matrix is invertible
The main LFSR theorem: Let $M=\left[\begin{array}{ccc}z_{1} & \ldots & z_{m} \\ z_{2} & \ldots & z_{m+1} \\ z_{m} & \ldots & z_{2 m-1}\end{array}\right]$ with $z_{1}, \ldots, z_{2 m-1}$ bits

1. If $z_{1}, \ldots, z_{2 m-1}$, satisfies linear recurrence of order $<\mathrm{m}$, then $\operatorname{det}(M) \equiv 0 \bmod z$
2. OTOH if $z_{1}, \ldots, z_{2 m-1}$ satisfies a linear recursion of order m and $\operatorname{det} M \equiv 0 \bmod z$, then $z_{1}, \ldots, z_{2 m-1}$ satisfies a linear recursion of order $<\mathrm{m}$

In summary: M is invertible $\bmod \mathrm{z} \Leftrightarrow z_{1}, \ldots, z_{2 m-1}$ satisfies no linear recurrence of length $<\mathrm{m}$

Another example: suppose z_{i}, \ldots satisfies $z_{i+3}=c_{0} z_{i}+c_{1} z_{i+1}+c_{2} z_{i+2} \bmod 2$
$\left[\begin{array}{cccccc}z_{1} & z_{2} & z_{3} & z_{4} & = & c_{0} z_{1}+c_{1} z_{2}+c_{2} z_{3} \\ z_{2} & z_{3} & z_{4} & z_{5} & = & c_{0} z_{2}+c_{1} z_{3}+c_{2} z_{4} \\ z_{3} & z_{4} & z_{5} & z_{6} & = & c_{0} z_{3}+c_{1} z_{4}+c_{2} z_{5} \\ z_{4} & z_{5} & z_{6} & z_{7} & = & c_{0} z_{4}+c_{1} z_{5}+c_{2} z_{6}\end{array}\right]$
Last column: $\left(\begin{array}{l}z_{4} \\ z_{5} \\ z_{6} \\ z_{7}\end{array}\right)-c_{0}\left(\begin{array}{c}z_{1} \\ z_{2} \\ z_{3} \\ z_{4}\end{array}\right)-c_{1}\left(\begin{array}{l}z_{2} \\ z_{3} \\ z_{4} \\ z_{5}\end{array}\right)-c_{2}\left(\begin{array}{l}z_{3} \\ z_{4} \\ z_{5} \\ z_{6}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
\therefore the determinate of the above matrix is 0 as the last column is a linear combination of the first 3 columns

September 19th

Permutation on a set χ is a map alpha $: \chi \rightarrow X$ that is one to one and onto.
Two notations:

1. The 2 row form: $\alpha=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5\end{array}\right)$
2. The cycle decomposition: $\alpha=(13)(24)(31)(42)(55)$
$\beta=(12453)$
$\alpha \circ \beta=(13)(24)(31)(42)(55) \circ(12453)=(145)(2)(3)$

September 21st

Review: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are the first six enigma permutations for a given daily setting. The permutations $\mathrm{D}^{*} \mathrm{~A}$ $\mathrm{E}^{*} \mathrm{~B}$ and $\mathrm{F}^{*} \mathrm{C}$ are independent of the plaintext.
Signature of a setting $=$ cycle structure of $D^{*} A, E^{*} B, F^{*} C$
Permutation: 1-1 map of a set onto itself
Permutations are invertible
Two row permutation: Let $\pi=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 9 & 3 & 10 & 4 & 1 & 6 & 5 & 8 & 2\end{array}\right)$
$\pi=\left(\begin{array}{lllll}2 & 9 & 8 & 5 & 10)(176)(3)(3 \text { disjoint cycles) }) ~\end{array}\right.$
$\sigma=\left(\begin{array}{ll}15 & 5 \\ 6 & 2\end{array}\right)(478)(910)$
$\pi \sigma=(2984310)(176)(3)(15362)(478)(910)=(46927531)(108)$
*Read from right to left
$\sigma \pi=\left(\begin{array}{llllll}1 & 8 & 3 & 6 & 7 & 2\end{array} 10\right)(49)$
Q: Do $\alpha \beta$ have the same cycle structure?
Inverses: Given $\mathrm{n} f: X \rightarrow Y$ is 1-1 and onto, define $f^{-1}: Y \rightarrow X$ by $f^{-1}(r)=s$, where $f(s)=r$
Let $\gamma=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ \gamma(1) & \gamma(2) & \ldots & \gamma(n)\end{array}\right)$. Then $\gamma^{-1}=\left(\begin{array}{cccc}\gamma(1) & \gamma(2) & \ldots & \gamma(n) \\ 1 & 2 & \ldots & n\end{array}\right)$
Conjugacy: Let α and β be permutations. Then $\alpha \beta \alpha^{-1}$ is called the α conjugate of β
$\beta=(351)(24), \alpha=(1)(2345)$
$\alpha \beta \alpha^{-1}=(1)(2345)(351)(24)(5432)(1)=(142)(35)$
Note: same cycle structure of β
Theorem: If α and β are permutations, then β and $\alpha \beta \alpha^{-1}$ have the same cycle structure.
Proof: We begin with a lennma.
If α and β are permuations, and β maps i to j, then $\alpha \beta \alpha^{-1}$ maps $\alpha(i)$ to $\alpha(j)$
Proof 1) $\alpha \beta \alpha^{-1}(\alpha(i))=\alpha\left(\beta\left(\alpha^{-1}(\alpha(i))\right)\right)=\alpha(\beta(i))=\alpha(j)$
Proof of theorem: Suppose $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ in a cycle of β, Then $\alpha \beta \alpha^{-1}$ takes $\alpha\left(a_{1}\right)$ to $\alpha\left(a_{2}\right)$, thus $\alpha \beta \alpha^{-1}$ in short $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ is a cycle of $\alpha \beta \alpha^{-1}$

The signature theorem: The signature of an enigma setting is independent of the plugboard.
Proof: ...

September 24th

Rejewshes
The shape of $D \circ A$ (its cycle structure) is independent of the plug board. If $A=S \circ \alpha \circ S$ and $D=S \circ \delta \circ S$ α is first setting without the plugboard, because S is its own inverse, we have $D \circ A=S \circ \delta \circ S \circ S \circ \alpha \circ S=$ $S \circ(\delta \circ \alpha) \circ S=S \circ(\delta \circ \alpha) \circ S^{-1}$.

Theorem: Let α and β be permutations on $1, \ldots, 2 \mathrm{n}$ that are each a product of n disjoint 2 -cycles. Then every cycle length in the cycle decomposition of $\beta \circ \alpha$ occurs an even number of times.

Ex. $\mathrm{n}=4, \#$ of perms $=4!=24$
Of this type: 1-1: $(1)(2)(3)(4)=$ identity $=12-2:(12)(34)-(13)(24)-(14)(23)=3 \exists 4$ such - Proof by induction: TPIBI on $n \geq 1$
Base case: $\mathrm{n}=2, \alpha=(12)=\beta, \beta \alpha=(1)(2)$
Th. Let n be an int >1 and spse them is true for all $k, 1 \leq k<n$. Finish. Let α and β be so in the statement of theorem.

Ex. $\alpha=(15)(27)(310)(49)(86)$
$\beta=(14)(710)(25)(83)(96)$
$\beta \circ \alpha=(121089)(75463)$
If we know that α and β are perms, and β sends i to j then $\alpha=\sigma \beta \sigma^{-1}$ sends $\sigma(i)$ to $\sigma(j)$.
ie. if $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ is a cycle of β, then $\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{r}\right)\right)$ is a cycle of $\alpha=\sigma \beta \sigma^{-1}$. Also if α and β have the same cycle type, then they are conjugates.
ex. $\beta=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\left(\begin{array}{l}2\end{array}\right)$
$\alpha=(253)(14)$
For any σ, we have $\sigma \beta \sigma^{-1}=(\sigma(1) \sigma(3) \sigma(5))(\sigma(2) \sigma(4))=\left(\begin{array}{ll}2 & 5 \\ 3\end{array}\right)(14)$
$\sigma(1)=2, \sigma(3)=5, \sigma(5)=3, \sigma(2)=1, \sigma(4)=4$
$\sigma=(12)(35)(4)$
$\sigma \beta \sigma^{-1}=(12)(35)(4)(135)(24)(4)(35)(12)=(14)(253)=\alpha$

September 26th

$\sigma=\left(\begin{array}{lll}1 & 7 & 4\end{array}\right)\left(\begin{array}{ll}5 & 8 \\ 9 & 2\end{array}\right)(63)$ and $\tau \sigma \tau^{-1}=\left(\begin{array}{lll}5 & 6 & 3\end{array}\right)\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)(89)$
If σ sends i to j, then $\tau \sigma \tau^{-1}$ sends $\tau(i)$ to $\tau(j)$
$(\tau(1)=5, \tau(7)=6, \tau(4)=3)(\tau(5)=1, \tau(8)=4, \tau(9)=2, \tau(2)=7)(\tau(6)=8, \tau(3)=9)$
This results in $\tau=(15)(7684392)$
To find another possible value of τ, map τ to another value in the same cycle
Vernam Cipher (one time pad)
Eve gets to look at come ciphertext. What can she learn about the key?
Security:

- Computational - The ciphertext has no information on the key
- Provable - Can the key be verified to be correct
- Unconditional -
X is an experiment [aka random variable] with outcomes in some finite set \mathbb{X} An event is a subset of the \mathbb{X}.
If x and y are outcomes, write $\operatorname{Pr}(X)=x$ or $\operatorname{Pr}(x)$ to mean (\# successes/\# trials).
$\operatorname{Pr}(x, y)=$ probability that both x and y happen.
Mutual exclusivity: $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \operatorname{Pr}(y)$
Independent and mutual exclusivity are not the same!

September 28th

Review for Exam 1:

Classical cryptosystems: Shift, Affine, Monoalphabetic Substitution, Polyalphabetic Substitution, Vigenere, Hill (Block), Linear Feedback Shift Register (Stream), Enigma

Mathematica topics: Congruences, Modular Arithmetic, Solving Linear Equations ($\mathrm{ax}+\mathrm{by}=\mathrm{d}$ in integers), GCD and Euclid's Alg, Extended GCD, Inversion (mod n), Matrix Inversion, Permutations, Conjugary, Euler ϕ function

Cryptoanalytics: Frequency Analysis, Mono/Di/Trigraphs, Kasiski Test (Viginare), Index of Coincidence, Finding Linear Recursions from a Bit Stream

October 3rd

Entropy - Let \mathbb{X} be an experiment also known as a random variable, with outcome probabilities p_{1}, \ldots, p_{n}. H is a function that satisfies four properties.

1. For all p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $p_{1}+\ldots+p_{n}=1, H\left(p_{1}, \ldots, p_{n}\right)$ is a non-negative real number.
2. H is contiguous in each variable.
3. $H\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)<H\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$ thus n terms $<n+1$ terms. $H\left(\frac{1}{2}, \frac{1}{2}\right)<H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
4. If $0<g<1$, then $H\left(p_{1}, \ldots, p_{i}, q p_{i},(1-q) p_{i}, p_{i+1}, \ldots, p_{n}\right)=H\left(p_{1}, \ldots p_{i}, \ldots p_{n}\right)+p_{i} H(q, 1-q)$

Ex 1. x_{1} = 'odd', $x_{2}=$ 'even', $y_{1}=' 2 ', y_{2}=$ ' 4 or 6' - a fair die.
$H\left(\frac{1}{2}, \frac{1}{2}\right)$
$\left\{x_{1}, y_{1}, y_{2}\right\} \leftarrow H\left(\frac{1}{2}, \frac{1}{6}, \frac{1}{3}\right)$ by (4)
$H\left(\frac{1}{2}, \frac{1}{6}, \frac{1}{3}\right)=H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H\left(\frac{1}{3}, \frac{2}{5}\right)$
What's H?
$H\left(\frac{1}{2}, \frac{1}{2}\right)$ vs $H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$
$H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right): H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)=\frac{1}{2} H\left(\frac{1}{2}, \frac{1}{2}\right)+H\left(\frac{1}{2}, \frac{1}{2}\right)$
$H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)=H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)+\frac{1}{2} H\left(\frac{1}{2}, \frac{1}{2}\right)$
$H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)=H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H\left(\frac{1}{2}, \frac{1}{2}\right)$
So $H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)=2 H\left(\frac{1}{2}, \frac{1}{2}\right)$
$H\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)=3 H\left(\frac{1}{2}, \frac{1}{2}\right)$
$H\left(\frac{1}{2 n}, \ldots, \frac{1}{2 n}\right)=n H\left(\frac{1}{2}, \frac{1}{2}\right)$
$H\left(\frac{1}{3 n}, \ldots, \frac{1}{3 n}\right)=n H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
Define $A(k)=H\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)$
$A(3 n)=n A(3)$
$A(6)=A(2 * 3)=2 A(3)=A(3 * 2)=3 A(2)$
$A(6)=A(3)+A(3)$
$A(15)=A(5)+A(5)+A(5)$
Thml: If $H(X)$ satisfies prop's (1-4), for all X, then if x_{1}, \ldots, x_{n} are outcomes with probabilities p_{1}, \ldots, p_{n}, then $H\left(p_{1}, \ldots, p_{n}\right)=-\lambda \sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)$ where $p_{i} \neq 0$ for some positive constant λ.

October 5th

Def. Let \mathbb{X} be an experiment with outcomes in a set (also called \mathbb{X}) and associated prob distribution. Then $H(\mathbb{X})=-\sum_{x \in \mathbb{X}} \operatorname{Pr}(x) \log _{2}(\operatorname{Pr}(x)), \operatorname{Pr}(x)>0 . \quad H(\mathbb{X})$ is the expected value of $-\log _{2}(\operatorname{Pr}(x))$ But $\lim _{x \rightarrow 0} x \log _{b}(x)=0$
What is the expected \# of guesses needed to determine a particular \#, about which you only know its range - S'?

Example $\mathrm{S}^{\prime}=\{0,1,2,3,4,5,6,7\}$

```
Q: Is n $>$ 3?
    Yes (1) - Is n $>$ 5?
        Yes (1) - Is n $>$ 6?
            Yes (1) - Answer is 7 (111)
```

```
    No (0) - Answer is 6 (110)
    No (0) - Is n $>$ 4?
    Yes (1) - Answer is 5 (101)
    No (0) - Answer is 4 (100)
No (0) - Is n $>$ 1?
    Yes (1) - Is n $>$ 2?
    Yes (1) - Answer is 3 (011)
    No (0) - Answer is 2 (010)
No (0) - is n $>$ 0?
    Yes (1) - Answer is 1 (001)
    No (0) - Answer is 0 (000)
```

Let $x \in\{0,1,2, \ldots, 7\}$, and let $\operatorname{Pr}(x)=\frac{1}{8}$
Then $E=-\sum_{x=0}^{7} \operatorname{Pr}(x) \log _{2}(\operatorname{Pr}(x))=-\sum_{x=0}^{7} \frac{1}{8} \log _{2} \frac{1}{8}=-8\left(\frac{1}{8}\right) \log _{2}\left(\frac{1}{8}\right)=-\log _{2}\left(2^{-3}\right)=-(-3) \log _{2}(2)=3$
What is the expected \# of guesses needed to determine the exact number of heads in the following experiment: we flip two fair (distinguishable) coins.
$\operatorname{Pr}(0$ heads $)=\frac{1}{4}, \operatorname{Pr}(1$ heads $)=\frac{1}{2}, \operatorname{Pr}(2$ heads $)=\frac{1}{4}$
Are they the same?
Q: Are they the same?
Yes (1/2) - Is there a head?
Yes - Answer is 2 heads
No - Answer is 0 heads
No (1/2) - Answer is 1 head
Answer $=\frac{3}{2}$
$\operatorname{Pr}(0) \log _{2}(\operatorname{Pr}(0))+\operatorname{Pr}(1) \log _{2}(\operatorname{Pr}(1))+\operatorname{Pr}(2) \log _{2}(\operatorname{Pr}(2))=\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)+\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)+\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)=\frac{1}{4} \log _{2}(4)+$ $\frac{1}{2} \log _{2}(2)+\frac{1}{4} \log _{2}(4)=\frac{2}{4}+\frac{1}{2}+\frac{2}{4}=\frac{3}{2}$

October 8th

PSet6 Problem 3:
$H(X)=H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H\left(\frac{1}{2^{8}}, \ldots, \frac{1}{2^{8}}\right)+\frac{1}{2} H\left(\frac{1}{2^{32}-2^{8}}, \ldots, \frac{1}{2^{32}-2^{8}}\right)$
where $H\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)=\sum_{x=1}^{n} \operatorname{Pr}(x) \log _{2}(\operatorname{Pr}(x))=-n * \frac{1}{n} * \log \left(\frac{1}{n}\right)=\log _{2} n$
Eve gets to see some ciphertext. How much does she know about the plaintext than when she did not observe the ciphertext?
Conditional Entropy: Given two experiments X and Y , define $H(Y \mid X):=\sum_{X}(\operatorname{Pr}(X=x) H(Y \mid X=x))=$
$\sum_{x \in X} \operatorname{Pr}(x) \sum_{y \in Y}\left(\operatorname{Pr}(y \mid x) \log _{2} \operatorname{Pr}(y \mid x)\right)$. Recall $\operatorname{Pr}(y \mid x)=\frac{\operatorname{Pr}(y, x)}{\operatorname{Pr}(x)}$. So $\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)=\operatorname{Pr}(y, x)$. Thus $H(Y \mid X)=$
$-\sum_{x \in X y \in Y} \operatorname{Pr}(x) \operatorname{Pr}(y \mid x) \log _{2} \operatorname{Pr}(y \mid x)=-\sum_{x \in X y \in Y} \operatorname{Pr}(y, x) \log _{2} \operatorname{Pr}(y \mid x)$
A cryptosystem has perfect secrecy provided $H(P \mid C)=H(P)$.

October 10th

Huffman Encoding - Begin with an experiment X with outcomes and probabilities.
$0.5 \mathrm{a} \leftrightarrow 00$
$0.3 \mathrm{~b} \leftrightarrow 01$
$0.1 \mathrm{c} \leftrightarrow 10$
$0.1 \mathrm{~d} \leftrightarrow 11$

Write down outcomes together with their probabilities.
Pick the two outcomes with the smallest probabilities, assign 1 to one of them and 0 to the other.
$\mathrm{c} \rightarrow 1, \mathrm{~d} \rightarrow 0$
Combine the two event outcomes into one, with the probability $=$ sum of the two previous.
$\mathrm{c} / \mathrm{d} \rightarrow 1, \mathrm{~b} \rightarrow 0$
$\mathrm{b} / \mathrm{c} / \mathrm{d} \rightarrow 0, \mathrm{a} \rightarrow 1$
Repeat till only one outcome.
Encode each outcome by writing the bits in reverse order from final outcome to initial outcome.
$\mathrm{a} \rightarrow 1, \mathrm{~b} \rightarrow 00, \mathrm{c} \rightarrow 011, \mathrm{~d} \rightarrow 010$
$\mathrm{L}=$ expected length of bit (encoding) string for the outcomes $=$ avg. $\#$ of bits $=0.5(1)+0.3(2)+0.1(3)+0.1(3)$
$=1.7<2$
Entropy $H(X)=-\left(0.5 \log _{2} 0.5+0.3 \log _{2} 0.3+0.2 \log _{2} 0.1\right) \approx 1.685$
L is bounded on the lower end by the entropy and upper end by entropy +1 .
The entropy of English:
Random characters $(26)=\log _{2}(26) \approx 4.7$
Random character $\mathrm{w} /$ space $=\log _{2}(27) \approx 4.75$
Monographic distribution ≈ 4.18
Digraphs $=H\left(x \mid x_{-1}\right) \approx 3.56$
Trigraphs $=H\left(x \mid x_{-1_{2}}\right) \approx 3.3$
If $L^{N}=$ probability distribution of N graphs, then $\mathrm{H}($ English $)=\lim _{N \rightarrow \infty} \frac{H\left(L^{N}\right)}{N}$

October 15th

Coding vs crypto - error (detect/correct) codes - sending message over noisy networks (crypto sends over nosy networks)
Detecting errors - codeword $=$ message + check
Possibilities:

1. duplicate message $-(1011)+(1011)=(10111011)$
2. parity check $-(1011)+\operatorname{xor}(1011)=(1011)+(1)$ (append a bit to make $\#$ of 1 s even)

Correcting errors - harder than detecting

1. Triplication - message bit $=\mathrm{x}$, code word $=\mathrm{xxx}$

An (n, k) code is a code with codewords of length n and messages of length k

October 17th

Practical error correction

Terminology
Code $=$ strings from an alphabet (all of the same length)
An (n, k) code is a code in which the code words have length n and there are k message characters.
The data rate per bit for an (n, k) code $\mathrm{C}[$ over $\{0,1\}]$ with w codewords in all - is defined by $r=\frac{\log _{2}(w)}{n}$ For an (n,n) code, the data rate $d=\frac{\log _{2}\left(2^{n}\right)}{n}=1$ (no error correction)

Triplication code: $\mathrm{a}(3,1)$ code $-\mathrm{M}=0$, send $000, \mathrm{M}=1$, send $111 . \mathrm{n}=3$, $\mathrm{w}=2$ so $r=\frac{\log _{2}(2)}{3}=\frac{1}{3}$ The 2 x 2 code: the code word is a string of 8 bits $\left(x_{1}, x_{2}, \ldots, x_{8}\right)$ where bits $1,2,4$, and 5 are message bits, bit $3=1$ xor 2 , bit $6=4$ xor 5 . The bits received $\left(y_{1}, y_{2}, \ldots, y_{3}\right)$ are put into an array | y_{1} | y_{2} | y_{3} |
| :--- | :--- | :--- |
| y_{4} | y_{5} | y_{6} |
| y_{7} | y_{8} | |

$$
\mathrm{A}=y_{1}+y_{2}+y_{3}
$$

$\mathrm{B}=y_{4}+y_{5}+y_{6}$
$\mathrm{C}=y_{1}+y_{4}+y_{7}$
$\mathrm{D}=y_{2}+y_{5}+y_{8}$

Wrong bits (pairs)	Error bit
A,C	y_{1}
B,D	y_{5}
A,D	y_{2}
B,C	y_{4}

Wrong bits (single) | A | B | C | D |
| :---: | :---: | :---: | :---: |
| y_{3} | y_{6} | y_{7} | y_{8} |

data rate: $\mathrm{n}=8, \mathrm{k}=4, \mathrm{w}=2^{4}$, therefore $r=\frac{\log _{2}\left(2^{4}\right)}{8}=\frac{1}{2}$
Efficient encoding: code $=$ block of 7 bits x_{1} to x_{7} where $x_{3}, x_{5}, x_{6}, x_{7}$ are message bits.
Choose x_{4} to make $\alpha=x_{4}+x_{5}+x_{6}+x_{7}=0(\bmod 2)$.
Choose x_{2} to make $\beta=x_{2}+x_{3}+x_{6}+x_{7}=0(\bmod 2)$
Choose x_{1} to make $\gamma=x_{1}+x_{3}+x_{5}+x_{7}=0(\bmod 2)$.
Blocks received, compute α, β, γ.
Read $\alpha \beta \gamma$ as a binary integer j.
$j=$ subscript such that x_{j} is incorrect if $j=1, \ldots, 7$.
If $j=0$, then there are no errors.
Let $\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right)=1111101,\left(\begin{array}{lllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7}\end{array}\right)\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)=110$
Thus error in bit 6 .
$\beta=010,011,110,111$ (second bit is 1)
$\alpha=110,101,110,111($ first bit is 1$)$

October 19th

Hamming distance - defection and connection
The Hamming $(7,4)$ code - another look
The Hadamard Code - Let x, y be strings of the same length. $H(x, y)$, the hamming distance between x and y is defined to be the number of positions at which x and y differ.
Ex. let $\mathrm{x}=1001100$ and $\mathrm{y}=0101011$. $\mathrm{H}(\mathrm{x}, \mathrm{y})=5$
Binary: weight of $x=\#$ of $1 \mathrm{~s}=\#$ of non-0 bits
If x and y are bit strings, then $\mathrm{H}(\mathrm{x}, \mathrm{y})=$ weight of xored strings
Theorem: Let C be a code with minimum distance d between code words. Then
a) C can detect up to d-1 errors
b) C can correct up to (d-1)/2 errors

Hamming Code: 4 message bits, 3 parity bits - send 7 bits Hadamard Code: 6 message bits, 26 parity bits - send 32 bits data rate $=\log _{2}\left(2^{6}\right) / 32=6 / 32$

October 22nd

Hadamard Code $(32,6)$ code, length $=32$ bits, message $=6$ bits.
More generally, $\left(2^{n}, \mathrm{n}+1\right)$ codes
$(32,6)$ corrects up to 7 errors.
$(16,5)$ corrects up to 3 errors.
$\left(2^{n}, \mathrm{n}+1\right)$ corrects up to $2^{n-2}-1$ errors.
For the $(16,5)$ code: messages are the 32 integers with a binary representation of no more than 5 bits.
Two matrices of interest: a generating matrix G (produces the codeword), a parity check matrix P. G is a 4×16 matrix, with the columns numbered $j=0, \ldots, 15$. The j th column is the 4 bit representation of j. That is,
if $j=8 j_{3}+4 j_{2}+2 j_{1}+j_{0}$, then the jth column of G is $\left(\begin{array}{c}j_{3} \\ j_{2} \\ j_{1} \\ j_{0}\end{array}\right)$ Thus $\mathrm{G}=\left[\begin{array}{ccccccc}0 & 0 & 0 & \ldots & 1 & 1 & 1 \\ 0 & 0 & 0 & \ldots & 1 & 1 & 1 \\ 0 & 0 & 1 & \ldots & 0 & 1 & 1 \\ 0 & 1 & 0 & \ldots & 1 & 0 & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 1 & 0 & \ldots & 13 & 14 & 15\end{array}\right]$
let $x=x_{4}+x_{3}+x_{2}+x_{1}+x_{0}$ be a 5 bit message word.
To encode x :

1. Form $x^{x}=\left(x_{3}, x_{2}, x_{1}, x_{0}\right)$
2. Form the 16 long vector $y=x^{*} * G \bmod 2=\left(y_{1}, \ldots, y_{1} 5\right)$
3. For $1<i<16$, set $z_{i}=(-1)^{y_{i}}$

$$
\text { For } 26=11010, x^{*}=(1,0,1,0)
$$

$$
x^{*} * G=(0,0,1,1, \ldots)
$$

4. Set $z=\left(z_{1}, \ldots z_{1} 6\right)$ if $x_{4}=0$ (ie. if $\left.0 \leq x \leq 15\right)=\left(-z_{1}, \ldots,-z_{1} 6\right)$ if $x_{4}=1$ (ie. if $16 \leq x \leq 31$) where z is the encoding of x

To decode, form the parity check matrix P , a $16 \mathrm{x} 16(-1,1)$ matrix whose j th row is the encoding of j , for $0 \leq j \leq 15$.
Let w be a 16 -long vector of 1 s and -1 s . Form w $*$ P.

\# of errors	Range for all dot products but 1	Range for the ' 'right', one	Can determine correct message?
0	0	16 or -16	Yes
1	-2 to 2		14 to 16 or -14 to -16
2	-4 to 4		12 to 16 or -12 to -16

Can detect up to 7 errors but correct up to 3 errors.
Constructing parity check matrix for Hadamard codes

$$
\begin{aligned}
H_{1} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right): H_{1} * H_{1}^{t}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=2 I_{2} \\
H_{2} & =\left(\begin{array}{ll}
H_{1} & H_{1} \\
H_{1} & H_{1}
\end{array}\right): H_{2} * H_{2}^{t}=4 I_{4} \\
H_{3} & =\left(\begin{array}{ll}
H_{2} & H_{2} \\
H_{2} & H_{2}
\end{array}\right)_{8 x 8}: \ldots \\
H_{4} & =\left(\begin{array}{ll}
H_{3} & H_{3} \\
H_{3} & H_{3}
\end{array}\right): \ldots=P
\end{aligned}
$$

1001100 is a codeword in $(7,4)$
Each codeword is 1 away from seven non-codewords.

October 24th

A q-ary code is a code that uses a set of q characters Def 1. Let C be a code [ie, a set of vectors of fixed length] over a character set of q characters. Let w be a code word and $t \in\{0,1, \ldots\}$
The sphere $B(w, t)$ of radius t about the word w is defined by $B(w, t)=\{$ strings $s \mid H(w, s) \leq t\}$
Prop 1. Let C be a code of length n and let w be a codeword. Then $|B(w, t)|=1+\binom{n}{1}(q-1)+$ $\binom{n}{2}(q-1)^{2}+\ldots+\binom{n}{t}(q-1)^{t}$.
$B(w, t)$ contains 1 string $s: H(s, w)=0 \rightarrow s=w$
\# of strings with $H(s, w)=1=\binom{n}{1} *(q-1)$.
\# of strings with $H(s, w)=2 ? \exists\binom{n}{2}$ pair of positions to alter, each having $(q-1)^{2}$ ways of altering each pair.

Th. (Sphere Packing Bound/Hamming Bound) - If C is a q-ary code of length n , and minimum distance d , and if t is a positive integer such that $\mathrm{d} \geq 2 \mathrm{t}+1$, then the number M of code words satisfies $M \leq \frac{q^{n}}{\sum_{j=0}^{t}\binom{n}{j}(q-1)^{j}}$.

Proof. Because $\mathrm{d} \geq 2 \mathrm{t}+1, \mathrm{t} \leq\llcorner(d-1) / 2\lrcorner$, and so this code can correct as many as t errors.
If w_{1} and w_{2} are distinct codewords, then $B\left(w_{1}, t\right)$ and $B\left(w_{2}, t\right)$ do not overlap. Therefore if there are M codewords, then there are at least $M * \sum_{j=0}^{t}\binom{n}{j}(q-1)^{j}$ strings in the code. But the number of strings in the space $=q^{n}$. Therefore $M * \sum_{j=0}^{t}\binom{n}{j}(q-1)^{j} \leq q^{n}$.

Def 1. If a q-ary code of length n with M codewords satisfies the Hamming bound with equality, that code is called perfect.

Claim: The Hamming $(7,4)$ code is perfect.
Proof: We have $\mathrm{q}=2, \mathrm{n}=7$, and $\mathrm{d}=3$. Each sphere about a code word of radius $\llcorner(d-1) / 2\lrcorner=1$ has $\sum_{j=0}^{1}\binom{7}{j}(2-1)^{j}=1+7=8$ strings. $16=M \leq \frac{q^{n}}{\sum}=\frac{2^{7}}{1+7}=2^{4}=16$.

The $(15,11)$ Hamming code is also perfect. The parity bits are $1,2,4,8$.
$1=1+3+\ldots+15==0$
$2=2+3+6+7+\ldots==0$
$4=4+5+6+7+12+13+14+15==0$
$8=8+9+10+\ldots+15==0$
$\mathrm{n}=15, \mathrm{~d}=3$, thus $M * \sum_{j=0}^{1}\binom{15}{j}(2-1)^{j} \leq 2^{15}$ Thus $M \leq \frac{2^{1} 5}{1+15}=2^{15-4}=2^{11}$.

October 29th

PSet9 3a) Binary perfect 2-error correcting code of length n .
\# of code words: $M * \sum_{j=0}^{t}\binom{n}{j}(q-1)^{j}=q^{n}$
$\mathrm{q}=2, \mathrm{t}=2$, we have $M\left(1+n+\frac{n(n-1)}{2}\right)=2^{n}$
Therefore $\left.1+n+\frac{n(n-1)}{2}\right)=2^{n}$ is a power of 2 , say 2^{k}. Then $\frac{n^{2}-n}{2}+n+1=2^{k} \Rightarrow n^{2}+n+2=2^{k+1}$
$n^{2}+n+\left(2-2^{k+1}\right)=0$ (quadratic equation). So $n=\frac{1}{2}\left(-1+\sqrt{1^{2}-4(1)\left(2-2^{k+1}\right)}\right)=\frac{1}{2}\left(-1+\sqrt{-7+2^{k+3}}\right)$. Therefore $2^{k+3}-7$ is a square.

SPN - substitution permutation network - a crypto system that is broken up into units and run through a substitution box (s-box) then a permutation.
Our network: PT is 16 bits $=$ four 4-bit strings. Key (K) is 32 bits $=$ eight 4 -bit strings. The 4 -bit strings are the blocks.
Round: from previous round, you have a 16 bit string on hand which is derived somehow from the PT.
Round j: string on hand is called $w^{j-1}\left[j=1, w^{0}=P T\right]$ Take $w^{j-1} \oplus K^{j}$ and call this $u^{j}\left[K^{j}\right.$ is a "round key" of 16 bits, derived from the 32 bit key..]

Substitution: Take u^{j} and run it through the s-boxes. Call the result v^{j}.
Permutation: Take v^{j} and

1. Write it into a 4×4 array of bits, one row at a time.
2. Read it out by columns. Call this w^{j}.
3. Take $w^{j} \oplus K^{j+1}=u^{j+1}$

Exceptions: First round: $x=\mathrm{PT}, w^{0}=x=\mathrm{PT}$, then $u^{1}=w^{0} \oplus K^{1}$
Last round: do not perform the permutation.

	$\begin{aligned} & \text { PT } \\ & \text { \xor K } \end{aligned}$
Round 1	S
	P
	\xor K
Round 2	S
	P
	\xor K
Round 3	S
	\xor K
Round 4	S
	\xor K

Sequence of events for encryption:
K,S,P,K,S,P,K,S,P,K,S,K
Sequence of events for decryption:
K,S,K,P,S,K,P,S,K,P,S,K
The above pairs is equivalent

$$
\text { abc def ghi } \rightarrow \begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array} \rightarrow \text { adg beh cfi } \rightarrow \begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array} \rightarrow \text { abc def ghi }
$$

Key $=32$ bits $=D_{1} D_{2} D_{3} D_{4} D_{5} D_{6} D_{7} D_{8}$ where D_{i} is a block of 4 bits.
$K^{1}=D_{1} D_{2} D_{3} D_{4}$
$K^{2}=D_{2} D_{3} D_{4} D_{5}$
$K^{3}=D_{3} D_{4} D_{5} D_{6}$
$K^{4}=D_{4} D_{5} D_{6} D_{7}$
$K^{5}=D_{5} D_{6} D_{7} D_{8}$
Think of a 4-bit block as a hexadecimal number from 0-F.
Each s-box looks like this permutation: $(0, \mathrm{E})(1,4,2, \mathrm{D}, 9, \mathrm{~A}, 6, \mathrm{~B}, \mathrm{C}, 5, \mathrm{~F}, 7,8,3)$
Ex. 0110101100101110 (4 blocks) = 6 B 2 E \rightarrow B C D 0 (after permutation) $=1011110011010000$
$B_{1}+$ Perm: $\begin{array}{cccc}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array} \Rightarrow 1110011010001010$ (columns)

October 31st

16-bit PT, 32-bit Key K
$\mathrm{PT} \oplus K^{1}$
--- Round 1 ---
S-Boxes
Bit Permutation
\xor K^2

S-box:
0123456789 A B CD E F
E4D12FB83A6C5907

Bit permutation: $x_{1} x_{2} \ldots x_{1} 6$
Write this by columns in a 4×4 array and read it out by rows.

$$
\begin{aligned}
& \quad K=B_{1} B_{2} B_{3} B_{4} \ldots B_{8} \\
& K^{1}=B_{1} B_{2} B_{3} B_{4} \\
& K^{2}=B_{2} B_{3} B_{4} B_{5} \\
& K^{3}=B_{3} B_{4} B_{5} B_{6} \\
& K^{4}=B_{4} B_{5} B_{6} B_{7} \\
& K^{5}=B_{5} B_{6} B_{7} B_{8}
\end{aligned}
$$

Ex. $\mathrm{PT}=\mathrm{B}$ A $56, \mathrm{~K}=79 \mathrm{E} 1 \mathrm{C} \mathrm{D} 34$
$K^{1}=79 \mathrm{E} 1$
etc..
Decryption uses S-box derived from old S-box.
BitPerm" " " BitPerm $\oplus \mathrm{K}$, key derived from round key S .
New S-box $=S^{-1}$, the inverse substitution of the original.
Given a , with $\mathrm{b}=$ bit permutation of a $\mathrm{P}(\mathrm{a})$, and $\mathrm{c}=K^{i} \oplus \mathrm{~b}$.
Want to write this: start with C , do a bit perm $\mathrm{P}^{\prime}(\mathrm{C}), \mathrm{P}^{\prime}$ related to P . Follow that with an xor with L^{i}, related to K^{i}.

November 2nd

Encrypt: $\mathrm{PT} \rightarrow K^{1} \oplus P T=a$
Round 1: $a \rightarrow S^{1}(a)=b, b \rightarrow P(b)=c, c \rightarrow K^{2} \oplus c=d$
Round 2: $d \rightarrow S^{1}(d)=e, e \rightarrow P(e)=f, f \rightarrow K^{2} \oplus f=g$
Last round: S, \oplus
Decrypt:
Specific to one round:
$e \rightarrow S^{-1}(e)=d$
$d \rightarrow P^{*}(d)=c^{*}$
$c^{*} \rightarrow L^{4} \oplus c^{*}=b$
so $P^{*}(d) \oplus L^{4}=b$.
$\therefore P(b)=P\left(P^{*}(d) \oplus L^{4}\right), P(b) \oplus K^{4}=P\left(P^{*}(d) \oplus L^{4}\right) \oplus K^{4}=d$
What if $P(x \oplus y)=P(x) \oplus P(y)$? Then $d=P\left(P^{*}(d)\right) \oplus P\left(L^{4}\right) \oplus K^{4}$.
Let $P^{*}=P^{-1}$, the inverse of P and $P\left(L^{4}\right)=K^{4}$ ie. $L^{4}=P^{-1}\left(K^{4}\right)$, then $b=P^{-1}(d) \oplus L^{4}$

$$
\bar{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right) \leftrightarrow x_{1}, x_{2}, \ldots x_{n} \text { (bit string) }
$$

Ex. $\pi=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2\end{array}\right)$
$\pi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{4}, x_{3}, x_{5}, x_{1}, x_{2}\right)$
$\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}x_{4} \\ x_{3} \\ x_{5} \\ x_{1} \\ x_{2}\end{array}\right)$
If M is an $\mathrm{n} \times \mathrm{m}$ matrix and \bar{x}, \bar{y} are n -dimensional vectors, then we know that $\mathrm{M}(\bar{x} \oplus \bar{y})=\mathrm{M}(\bar{x}) \oplus \mathrm{M}(\bar{y})$
Decrypt: $L^{j}=P^{-1}\left(K^{j}\right), S^{*}=S^{-1}, P^{*}=P^{-1}$
$\mathrm{CT} \rightarrow \mathrm{CT} \oplus L^{5}=w^{5}, L^{j}=P^{-1}\left(K^{j}\right)$
$\rightarrow S^{-1} \rightarrow P^{-1}(=\mathrm{P}$, for the one in the book $) \rightarrow \oplus L^{4}=w^{4}$
$w^{4} \rightarrow S^{-1} \rightarrow P^{-1} \rightarrow \oplus L^{3}=w^{3}$ (Round 2)
$w^{3} \rightarrow S^{-1} \rightarrow P^{-1} \rightarrow \oplus L^{2}=w^{2}$ (Round 3)
$w^{2} \rightarrow S^{-1} \rightarrow \oplus L^{1}=\mathrm{PT}$ (Round 4)

November 5th

Crypto-analysis for the block cipher:
$P(x \oplus y)=P(x) \oplus P(y)$ is linear, easily invertible.
Def: The bias of a function with outcomes $\{0,1\}$ is defined by $\varepsilon: \operatorname{Pr}(\mathbb{X}=0)-\frac{1}{2}$.
Look for inputs $x_{i 1}, \ldots, x_{i u}$ and outputs $y_{j 1}, \ldots, y_{j v}$ for which $x_{i 1} \oplus \ldots \oplus x_{i u} \oplus y_{j 1} \oplus \ldots \oplus y_{j v}=0$ has a bias that's "big".

Let $\mathbb{X}_{1}, \mathbb{X}_{2}$ be random variables with outcomes in $\{0,1\}$. Set $p_{i}=\operatorname{Pr}\left(\mathbb{X}_{i}=0\right)$; then $\operatorname{Pr}\left(\mathbb{X}_{i}=1\right)=1-p_{i}$. What is $\operatorname{Pr}\left(\mathbb{X}_{1} \oplus \mathbb{X}_{2}=0\right)$?
$\operatorname{Pr}\left(\mathbb{X}_{1}=0, \mathbb{X}_{2}=0\right)+\operatorname{Pr}\left(\mathbb{X}_{1}=1, \mathbb{X}_{2}=1\right)=P_{1} * P_{2}+\left(1-P_{1}\right)\left(1-P_{2}\right)$. Substitute $P_{i}=\frac{1}{2}+\varepsilon_{i}=$ $\left(\frac{1}{2}+\varepsilon_{1}\right)\left(\frac{1}{2}+\varepsilon_{2}\right)+\left(\frac{1}{2}-\varepsilon_{1}\right)\left(\frac{1}{2}-\varepsilon_{2}\right)=\frac{1}{4}+\varepsilon_{1} \varepsilon_{2}+\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)+\frac{1}{4}+\varepsilon_{1} \varepsilon_{2}-\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)=\frac{1}{2}+2 \varepsilon_{1} \varepsilon_{2}=\operatorname{Pr}\left(X_{1} \oplus X_{2}=0\right)$. \therefore Bias $\left(\varepsilon_{1,2}\right)$ for $X_{1} \oplus X_{2}=2 \varepsilon_{1} \varepsilon_{2}$.

$$
\begin{aligned}
& \quad \operatorname{Pr}\left(X_{1} \oplus X_{2} \oplus X_{3}=0\right)=\operatorname{Pr}\left(\left(X_{1} \oplus X_{2}\right) \oplus X_{3}=0\right)=\frac{1}{2}+2\left(\varepsilon_{1}, \varepsilon_{2}\right)\left(\varepsilon_{3}\right)=\frac{1}{2}+2 * 2 \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} . \\
& \therefore \varepsilon_{1,2,3}=2^{2} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}
\end{aligned}
$$

The Piling-up Lennma: If x_{1}, \ldots, x_{n} are independent r.vs with biases $\varepsilon_{1}, \ldots, \varepsilon_{n}$, then the biases of $x_{1} \oplus$ $\ldots \oplus x_{n}$ is equal to $2^{n-1} \varepsilon_{1}, \ldots, \varepsilon_{n}$.

November 7th

$\operatorname{Pr}\left(X_{1} \oplus X_{3} \oplus X_{4} \oplus Y_{2}=0\right)=\frac{12}{16}$, bias $=\frac{1}{4}$
Deduce a statement of the form $P_{i 1} \oplus P_{i 2} \oplus \ldots \oplus P_{i r} \oplus C_{j 1} \oplus \ldots \oplus C_{j s} \oplus K_{l 1} \oplus \ldots \oplus K_{l t}=0$ where $K_{l 1} \oplus \ldots \oplus K_{l t}$ is fixed.
$u_{i, j}=j$ th bit of the input to the ith round of the S-box.
$v_{i, j}=j$ th bit of the output of the ith round of the S-box.
ith round $S_{i}=4$ nibble $S_{i, 1}, S_{i, 2}, S_{i, 3}, S_{i, 4}$
We know that $v_{1,6} \oplus u_{1,5} \oplus u_{1,7} \oplus u_{1,8}=0$ with $\mathrm{p}=\frac{12}{16}, \sum=\frac{1}{4}$
$v_{1,6} \oplus\left(P_{5} \oplus K_{1,5}\right) \oplus(\oplus) \oplus(\oplus)=0$ with $\mathrm{p}=\frac{3}{4}, \sum=\frac{1}{4}$

November 9th

Midterm 2
Begins with permutations
Know how the enigma machine works
Entropy
Huffman encoding
Up through definition of bias
AES - 128bit input string, key ranges from $128,256,512$ bits with 10,12 , and 14 rounds.

Fields with 2^{n} elements.

November 12th

$\mathbb{F}_{4}=\left\{0,1, f, f+1\right.$ where $y+y=0$ for all y and $\left.f^{2}=f+1\right\}$
K is a field. $(\mathrm{K},+)$ is an abelian group, $\left(\mathrm{K}-\{0\},^{*}\right)$ is an abelian group.
$\mathbb{F}_{4} \subseteq \mathbb{F}_{8}$?
Lagranges Theorem. If G, H are finite groups and $\mathrm{H} \subseteq \mathrm{G}$, then $|H|$ divides $|G|$.
$\left(\mathbb{F}_{4},+\right.$) has 4 elements
$\left(\mathbb{F}_{8},+\right)$ has 8 elements
$\left(\mathbb{F}_{4}-\{0\}, *\right)$ has 3 elements
$\left(\mathbb{F}_{8}-\{0\}, *\right)$ has 7 elements
Thus $\mathbb{F}_{4} \nsubseteq \mathbb{F}_{8}$
$\mathbb{F}_{8}=\left\{0,1, g, g+1, g^{2}, g^{2}+1, g^{2}+g, g^{2}+g+1\right\}$
$\mathbb{F}_{8}=\left\{a_{0}+a_{1} g+a_{2} g^{2}\right.$ where $\left.a_{i} \in\{0,1\}, g^{3}=g+1\right\}$
f satisfies the polynomial equation in $x^{2}+x+1=0$
g satisfies the polynomial equation in $x^{3}+x+1=0$
$\mathbb{F}_{2}[x]=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right.$ where $\left.a_{i} \in\{0,1\}, n \in\{0,1, \ldots\}\right\}$
Over $\mathbb{R}, x^{2}+x+1=(x+a)(x+b) \rightarrow a+b=1, a b=1, x=\frac{-1 \pm \sqrt{1^{2}-4(1)(1)}}{2}=\frac{-1 \pm \sqrt{-3}}{2}$ $\mathbb{F}_{4}=\mathbb{F}_{2}[x] \bmod \left(x^{2}+x+1\right)$

The AES field $=\mathbb{F}_{2}[x] \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right)$

November 26th

Finite Fields

For p a prime, begin with $\mathbb{Z}_{p}[x]=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n} \mid a_{i} \in \mathbb{F}_{p}, n=0,1,2, \ldots\right\}$
If $(\mathrm{n}, \mathrm{p})=1$, then Euclidean GCD algorithm $\Rightarrow \exists a, b, \in \mathbb{Z}: a n+b p=1$
Read this as congruence $\bmod \mathrm{p}$, we have $a n \equiv 1 \bmod p$
Def: let $a(x) \in \mathbb{Z}_{p}[x]$
Then $a(x)$ is irreducible provided

1. $\operatorname{deg}(a(x)) \geq 1$
2. if $a(x)=d(x) e(x)$, for $d(x), e(x) \in \mathbb{Z}_{p}[x]$, then either $d(x)$ or $e(x)$ is a constant $\neq 0$.
$\left[\ln \mathbb{Z}_{5}[x], 2 x+1=2(x+3)\right]$

Let $f(x)$ be a non zero poly. Then $a(x) \equiv b(x) \bmod f(x)$ provided $a(x)-b(x)$ is a multiple of $f(x)$.
Division "works like" integer division. ie. Given $f(x), g(x)(f(x) \neq 0)$, both in $\mathbb{Z}_{p}[x], \exists$ unique $q(x), r(x) \in$ $\mathbb{Z}_{p}[x]: g(x)=q(x) f(x)+r(x)$ with $\operatorname{deg}(r)<\operatorname{deg}(f)$ or $r \equiv 0$.

Example: find polynomial gcd $x^{4}+2 x^{3}+x+1, x^{3}+x+1$) over $\mathbb{Z}_{3}[x]$.
$x^{4}+2 x^{3}+x+1 / x^{3}+x+1=x+2$ re $-x^{2}-2 x-1$
$x^{3}+x+1 /-x^{2}-2 x-1=-x+2$ re $4 x$
$-x^{2}-2 x-1 / x=-x-2$ re -1
To construct a field with p^{r} elements, where $\mathrm{r}>1$ and p is a prime:

1. Find an irreducible poly $f(x) \in \mathbb{F}_{p}[x]$ of degree r
2. The set $\left\{a_{0}+a_{1} x+\ldots+a_{r-1} x^{r-1} \mid a_{i} \in \mathbb{F}_{p}\right\}$ is a field with p^{r} elements.

Arithmetic is in $\mathbb{Z}_{p}[x] \bmod f(x)$
Ex. A field with 27 elements. Look for a poly of degree $3=\mathrm{r}$ that is irreducible over $\mathbb{Z}_{3}[x]$.
$f(x)=x^{3}+2 x+1$ (irreducible)
$\mathbb{F}_{3} 3=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{i} \in \mathbb{Z}_{3}\right.$ and $\left.x^{3}+2 x+1 \equiv 0 \bmod f(x), x^{3} \equiv-2 x-1 \bmod f(x) \equiv x-1\right\}$
$\left(1+x^{2}\right)\left(2+x^{2}\right)=2+2 x^{2}+x^{2}+x^{4}=2+x^{4}=2+x^{2}-x .\left(x^{3}=x-1, x^{4}=x^{2}-x\right)$
$\therefore\left(1+x^{2}\right)\left(2+x^{2}\right)=\left(2-x+x^{2}\right)$
To find $\left(a_{0}+a_{1} x+a_{2} x^{2}\right)^{-1}$, do poly GCD extended on $\left(a_{0}+a_{1} x+a_{2} x^{2}, x^{3}+2 x+1\right)$.
$1=a(x)\left(2+x^{2}\right)+b(x)\left(x^{3}+2+1\right)$

November 28th

AES
PT \rightarrow Add Key \rightarrow [Byte Sub \rightarrow Shift Rows \rightarrow Mix Columns \rightarrow Add Key $] \rightarrow$ Byte Sub \rightarrow Shift Rows \rightarrow Add Key \rightarrow CT
Run through the round [] 9 times with a new key each time.
Key $=128$ bits
Bytes (block of 8 bits) have two identities:

1. They're bit strings of length 8
2. They're elements of a 256 -eleemnt field $\mathbb{F}_{2}{ }^{8}$
$\mathbb{F}_{2^{8}}=\mathbb{Z}_{2}[x] \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right)$ (irreducible)
The byte $a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}$ corresponds to the field element $a_{7} x^{7}+a_{6} x^{6}+\ldots a_{1} x+a_{0} \in \mathbb{F}_{2^{8}}$
$\mathrm{PT}=128$ long bit-string - read it as 16 byte. Load these bytes into a 4 x 4 matrix down the columns.
Thus $b_{0} b_{1} \ldots b_{E} b_{F}$ becomes $\left[\begin{array}{cccc}b_{0} & b_{4} & b_{8} & b_{C} \\ b_{1} & b_{5} & b_{9} & b_{D} \\ b_{2} & b_{6} & b_{A} & b_{E} \\ b_{3} & b_{7} & b_{B} & b_{F}\end{array}\right]$
Sub Bytes: fore each byte $y \in M$, define z by $\mathrm{z}=0$ if $\mathrm{y}=0$ or $\mathrm{z}=y^{-1}$ if $\mathrm{y} \neq 0$.
$* y^{-1}$ in $\mathbb{F}_{2^{8}}$
$y \rightarrow$ Byte to Field \rightarrow [Inverse] $\rightarrow z=y^{-1}$
$z \rightarrow$ Field to Vector $\rightarrow\left(z_{7}, z_{6}, \ldots z_{1}, z_{0}\right)$
Multiply vector by matrix ... and add column vector.
$\mathrm{y} \rightarrow S * y^{-1}+c v \bmod 2=$ Sub Bytes $[\mathrm{y}], \mathrm{S}=$ large array, cv $=$ constant vector
$f(x)=x^{8}+x^{4}+x^{3}+x+1$, to find $g(x)^{-1}$ in $\mathbb{Z}_{2}[x] \bmod f(x)$, use Euclidean GCD algorithm to find $a(x), b(x)$ polynomial where $a(x) * f(x)+b(x) * g(x)=1$. Thus $a(x) * 0+b(x) * g(x) \equiv 1 \bmod f(x)$. $b(x) * g(x) \equiv 1 \bmod f(x)$.

November 30th

$M=\left[\begin{array}{llll}b_{0} & b_{4} & b_{8} & b_{C} \\ b_{1} & b_{5} & b_{9} & b_{D} \\ b_{2} & b_{6} & b_{A} & b_{E} \\ b_{3} & b_{7} & b_{B} & b_{F}\end{array}\right]$
Shift Rows: $\left(\left[\begin{array}{cccc}a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3}\end{array}\right]\right)=\left[\begin{array}{cccc}a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\ a_{2,2} & a_{2,3} & a_{3,3} & a_{2,1} \\ a_{3,3} & a_{3,0} & a_{3,1} & a_{3,2}\end{array}\right]$
Mix Columns: if $\mathrm{S}=$ state $\mathrm{M}+\mathrm{X}$
$\operatorname{Mix} \operatorname{Columns}(\mathrm{S})=\mathrm{M}^{*} \mathrm{X}$, where $\mathrm{M}=\left(\begin{array}{cccc}x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x\end{array}\right)$
M is a 4 x 4 matrix over $\mathbb{F}_{2^{8}}$
Byte To Field $\left(a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}\right)=a_{7} x^{7}+a_{6} x^{6}+\ldots+a_{1} x+a_{0} \in \mathbb{F}_{2^{8}}$
Field To Byte $\left(\sum_{i=1}^{7} b_{i} x^{i}=b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right)$
$\mathbb{F}_{2^{8}}=\left\{a_{0}+a_{1} x+\ldots a_{7} x^{7} \mid a_{i} \in\{0,1\}\right.$ and $x^{8}+x^{4}+x^{3}+x+1=0$ or $\left.x^{8}=x^{4}+x^{3}+x+1\right\}$
Q: In $\mathbb{F}_{2^{8}}$, what is x^{8} ?
A: Don't know, look at \mathbb{F}_{8}, where I might find a clue: $\mathbb{F}_{8}=\left\{0,1, b, 1+b, b^{2}, 1+b^{2}, b+b^{2}, 1+b+b^{2}\right\}$
$b^{3}=b+1$
$b^{4}=b^{2}+b$
$b^{5}=b^{3}+b^{2}=b^{2}+b+1$
$b^{6}=b^{3}+b^{2}+b=b+1+b^{2}+b=b^{2}+1$
$b^{7}=1$
$\mathbb{F}_{8}=\left\{0, b^{7}, b^{5}, b^{6}, b^{4}, b^{5}\right\}$

In $\mathbb{F}_{2^{8}}$, what's x ?
$x^{8}+x^{4}+x^{3}+x+1=0$
$\therefore x^{8}=-\left(x^{4}+x^{3}+x+1\right)=x^{4}+x^{3}+x+1($ since $2=0)$
$x^{9}=x^{5}+x^{4}+x^{2}+x$
$x^{10}=x^{6}+x^{5}+x^{3}+x^{2}$
$x^{11}=x^{7}+x^{6}+x^{4}+x^{3}$
$x^{12}=x^{8}+x^{7}+x^{5}+x^{4}=x^{4}+x^{3}+x+1+x^{7}+x^{5}+x^{4}=x^{7}+x^{5}+x^{3}+x+1$
Q: In $\mathbb{F}_{2^{8}}$, what is x^{8} ?
A: I think I believe the derivation that $x^{8}=x^{4}+x^{3}+x+1$
Round key generation: Add Round Key: $\left[\begin{array}{cccc}s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}\end{array}\right] \oplus$ current round key
Round keys are formed from the original key $K=k_{0} k_{1} \ldots k_{E} k_{F}$
Form $\left[\begin{array}{llll}k_{0} & k_{4} & k_{8} & k_{C} \\ k_{1} & k_{5} & k_{9} & k_{D} \\ k_{2} & k_{6} & k_{A} & k_{E} \\ k_{3} & k_{7} & k_{k} & k_{F}\end{array}\right]=[W(0), W(1), W(2), W(3)]$
$O^{t h}$ round key is $[W(0), W(1), W(2), W(3)]$.
To construct the jth round key $[W(4 j), W(4 j+1), W(4 j+2), W(4 j+3)]$ do the following: (given $W(0), \ldots, W(i-$ 1))
$W(i)=W(i-1) \oplus W(i-4)$ if i is not a multiple of 4 .
If $i \equiv 0(\bmod 4)$, write $W(i-1)=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$;

Then $W(i)=W(i-4) \oplus\left[\begin{array}{c}\text { SubBytes }(b) \oplus x^{\frac{i-4}{4}} \\ \text { SubBytes }(c) \\ \text { SubBytes }(d) \\ \text { SubBytes }(a)\end{array}\right]$

December 3rd

AES Decryption
SubBytes(SB) - ShiftRows(SR) - MixColumns(MC) - AddRoundKey(ARK)
Inverse of ARK is ARK (bytes are xored)
If $X=Y \oplus K$, then $X \oplus K=Y \oplus(K \oplus K)=Y$.
Inverse of $\mathrm{MC}(\mathrm{S})=M * S$, where $\mathrm{M}=\left(\begin{array}{cccc}x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x\end{array}\right) \in M_{4 x 4}\left(\mathbb{F}_{2^{8}}\right)$:
Inverse of $\mathrm{MC}(\mathrm{S})$ is $M^{-1} * S$ where $M^{-1}=$ inverse of $\mathrm{M}=\left(\begin{array}{cccc}x^{3}+x^{2}+x & x^{3}+x+1 & x^{3}+x^{2}+1 & x^{3}+1 \\ x^{3}+1 & x^{3}+x^{2}+x & x^{3}+x+1 & x^{3}+x^{2}+1 \\ x^{3}+x^{2}+1 & x^{3}+1 & x^{3}+x^{2}+x & x^{3}+x+1 \\ x^{3}+x+1 & x^{3}+x^{2}+1 & x^{3}+1 & x^{3}+x^{2}+x\end{array}\right)$
(circulant)
Inverse of SR: $\operatorname{InvSR}\left(s_{i, j}\right)_{i, j=0}^{3}=\left(\begin{array}{llll}s_{00} & s_{01} & s_{02} & s_{03} \\ s_{13} & s_{10} & s_{11} & s_{12} \\ s_{22} & s_{23} & s_{20} & s_{21} \\ s_{31} & s_{32} & s_{33} & s_{30}\end{array}\right)$
Inverse of SB:
$\mathrm{SB}(\mathrm{S})$: For each byte y , define $z:=y^{-1} \in \mathbb{F}_{2^{8}}($ if $y \neq 0),=0$ if $\mathrm{y}=0$.
Then $w:=\left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ . . & . & . . & . . & . . & . . & . . & . . \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right] \bullet\left(\begin{array}{l}z_{0} \\ . . \\ z_{7}\end{array}\right) \oplus\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right) . M_{s}^{-1}=\left[\begin{array}{cccccccc}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ . & . . & . & . . & . & . & . & . . \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0\end{array}\right]$ (circulant)
Then $y=z^{-1}$ if $z \neq 0, y=0$ if $z=0$
To decrypt: Let $\operatorname{Rk}(0), \operatorname{Rk}(1), \ldots, \operatorname{Rk}(10)$ be the key schedule.
Begin with CT
Round 0: ARK(10),InvSR,InvSB
Round 1: ARK(9),InvMC,InvSR,InvSB
...
Round 9: ARK(1),InvMC,InvSR,InvSB
Round 10: ARK (0) \rightarrow PT

December 5th

SDES

Message: 12 bits
Key: 9 bits $=k_{1} \ldots k_{9}$
$\mathrm{RKi}=k_{i} k_{i+1} \ldots k_{i+7} \mathrm{w} /$ wrap around
Two s-boxes S_{1} and S_{2}, each is a 2 x 8 table
If $y_{1} y_{2} y_{3} y_{4}$ is an input, y_{1} addresses a row and $y_{2} y_{3} y_{4}$ addresses the column

Thus $\mathrm{S}=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | | | | |
| 1 | | | | | | | | |

Ex. 1110 is the value in the second row, 6 th column (output is a tribit)
Expander: $\operatorname{Ex}\left(b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}\right)=b_{1} b_{2} b_{4} b_{3} b_{4} b_{3} b_{5} b_{6}$
ith round: $p_{1} p_{2} \ldots p_{1} 2 \rightarrow L_{i-1}=p_{1} \ldots p_{6}, R_{i-1}=p_{7} \ldots p_{12}$
$L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)$ to get R_{i}, same with other half
f function: $\operatorname{Exp}\left(R_{i-1}\right)$ (8bits) $\oplus K_{i} \rightarrow x_{1} x_{2} . . x_{8} \rightarrow S_{1}\left(x_{1} x_{2} x_{3} x_{4}\right) \| S_{2}\left(x_{5} x_{6} x_{7} x_{8}\right) \rightarrow \oplus L_{i-1} \rightarrow R_{i}$
If $R_{i-1}=p_{7} . . p_{12}$ then $\operatorname{Exp}\left(R_{i-1}\right)=p_{7} p_{8} p_{10} p_{9} p_{10} p_{9} p_{11} p_{12} \oplus k_{i} k_{i+1} k_{i+2} k_{i+3} \ldots k_{i+7}$ so $S_{1}\left(p_{7} p_{8} p_{10} p_{9} \oplus\right.$ $\left.k_{i} k_{i+1} k_{i+2} k_{i+3}\right) \| S_{2}\left(p_{10} p_{9} p_{11} p_{12} \oplus k_{i+4} k_{i+5} k_{i+6} k_{i+7}\right)=f\left(R_{i-1, K_{i}}\right)$

December 10th

Review for Final Exam

Chapter 1 - Traditional Crypto [shift, affine, substitution [mono-alphabetic (cryptograms), poly-alphabetic (Vigenere)], stream cipher (LFSR), modular arithmetic, gcd algorithm, modular inversion, Kasiski test, IC, frequency analysis, LFSRs - solving for recursion, ENIGMA permutation [composition, conjugacy], details of the ENIGMA system, error correcting codes [encoding, decoding, Hamming distance, Hamming codes, Hadamard codes]

Chapter 2 - Shannon's information theory, entropy, Huffman encoding, one-time pads, probability, base theorem

Chapter 3 - Block ciphers, hill cipher, SPNs, Sbox, key schedule, AES [implementation, subbytes, shiftrows, mixcolumns], finite fields arithmetic, polynomial GCDs

In $\mathbb{F}_{8}=\mathbb{Z}_{2}[x] \bmod x^{3}+x+1:\left(x^{2}+x\right)\left(x^{2}+x+1\right)=x^{4}+x^{3}+x^{2}+x^{3}+x^{2}+x=x^{4}+x \equiv x^{2} \bmod x^{3}+x+1$

