Rev 114 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include "maindefs.h"
#include "timers.h"
#include "msg_queues.h"
#include "uart.h"
#include "i2c.h"
#include "adc.h"
#include "interrupts.h"
#include "xbee.h"
#include "pin_interrupts.h"
//----------------------------------------------------------------------------
// Note: This code for processing interrupts is configured to allow for high and
// low priority interrupts. The high priority interrupt can interrupt the
// the processing of a low priority interrupt. However, only one of each type
// can be processed at the same time. It is possible to enable nesting of low
// priority interrupts, but this code is not setup for that and this nesting
// is not enabled.
void interrupt_init() {
// Peripheral interrupts can have their priority set to high or low
// Decide on the priority of the enabled peripheral interrupts (0 is low, 1 is high)
// High priority interrupts
IPR3bits.RC2IP = 1; // USART2 RX interrupt
IPR1bits.SSPIP = 1; // I2C interrupt
// Low priority interrupts
// IPR1bits.RC1IP = 0; // USART1 RX interrupt
INTCON2bits.TMR0IP = 0; // Timer0 interrupt
IPR1bits.TMR1IP = 0; // Timer1 interrupt
IPR2bits.TMR3IP = 0; // Timer3 interrupt
// IPR1bits.ADIP = 0; // ADC interupt
INTCON2bits.RBIP = 0; // Port B interrupt
INTCON3bits.INT1IP = 0; // INT1 interrupt
// Enable I2C interrupt
PIE1bits.SSPIE = 1;
// Enable Port B interrupt
INTCONbits.RBIE = 1;
// Enable interrupt for INT1
INTCON3bits.INT1IE = 1;
}
void interrupt_enable() {
// Peripheral interrupts can have their priority set to high or low.
// Enable both high-priority interrupts and low-priority interrupts
RCONbits.IPEN = 1;
INTCONbits.GIEH = 1;
INTCONbits.GIEL = 1;
}
int interrupt_in_high_interrupt_routine() {
return (!INTCONbits.GIEH);
}
int interrupt_low_int_active() {
return (!INTCONbits.GIEL);
}
int interrupt_in_low_interrupt_routine() {
if (INTCONbits.GIEL == 1) {
return (0);
} else if (interrupt_in_high_interrupt_routine()) {
return (0);
} else {
return (1);
}
}
int interrupt_in_main_routine() {
if ((!interrupt_in_low_interrupt_routine()) && (!interrupt_in_high_interrupt_routine())) {
return (1);
} else {
return (0);
}
}
// Set up the interrupt vectors
void InterruptHandlerHigh();
void InterruptHandlerLow();
#pragma code InterruptVectorLow = 0x18
void InterruptVectorLow(void) {
_asm
goto InterruptHandlerLow //jump to interrupt routine
_endasm
}
#pragma code InterruptVectorHigh = 0x08
void InterruptVectorHigh(void) {
_asm
goto InterruptHandlerHigh //jump to interrupt routine
_endasm
}
//----------------------------------------------------------------------------
// High priority interrupt routine
// this parcels out interrupts to individual handlers
#pragma code
#pragma interrupt InterruptHandlerHigh
void InterruptHandlerHigh() {
// We need to check the interrupt flag of each enabled high-priority interrupt to
// see which device generated this interrupt. Then we can call the correct handler.
// Check to see if we have an interrupt on USART2 RX
if (PIR3bits.RC2IF) {
DBG_PRINT_INT("INT: UART2 RX\r\n");
// Call the interrupt handler
uart_recv_interrupt_handler();
// Clear the interrupt flag
PIR3bits.RC2IF = 0;
}
// // Nofity the xbee to stop sending serial data
// xbee_set_RTS(1);
// Check to see if we have an I2C interrupt
if (PIR1bits.SSPIF) {
DBG_PRINT_INT("INT: I2C\r\n");
// Call the handler
i2c_interrupt_handler();
// Clear the interrupt flag
PIR1bits.SSPIF = 0;
}
// //Notify xbee to resume sending serial data
// xbee_set_RTS(0);
// The *last* thing I do here is check to see if we can
// allow the processor to go to sleep
// This code *DEPENDS* on the code in messages.c being
// initialized using "init_queues()" -- if you aren't using
// this, then you shouldn't have this call here
// MQ_sleep_high_interrupt_if_okay();
}
//----------------------------------------------------------------------------
// Low priority interrupt routine
// this parcels out interrupts to individual handlers
#pragma code
#pragma interruptlow InterruptHandlerLow
// This works the same way as the "High" interrupt handler
void InterruptHandlerLow() {
// Check to see if we have an interrupt on INT1
if (INTCON3bits.INT1IF) {
DBG_PRINT_INT("INT: INT1\r\n");
int1_interrupt_handler();
INTCON3bits.INT1IF = 0;
}
// Check to see if we have an interrupt on any port B inputs <4:7>
if (INTCONbits.RBIF) {
DBG_PRINT_INT("INT: Port B\r\n");
port_b_int_interrupt_handler();
INTCONbits.RBIF = 0;
}
// Check to see if we have an interrupt on timer 0
if (INTCONbits.TMR0IF) {
DBG_PRINT_INT("INT: Timer 0\r\n");
// Call the handler
timer0_interrupt_handler();
// Clear this interrupt flag
INTCONbits.TMR0IF = 0;
}
// Check to see if we have an interrupt on timer 1
if (PIR1bits.TMR1IF) {
// Call the interrupt handler
timer1_interrupt_handler();
// Clear the interrupt flag
PIR1bits.TMR1IF = 0;
}
// Check to see if we have an interrupt on timer 3
if (PIR2bits.TMR3IF) {
DBG_PRINT_INT("INT: Timer 3\r\n");
timer3_interrupt_handler();
PIR2bits.TMR3IF = 0;
}
// // Check to see if we have an interrupt on USART1 RX
// if (PIR1bits.RC1IF) {
// // Call the interrupt handler
// uart_recv_interrupt_handler();
//
// // Clear the interrupt flag
// PIR1bits.RC1IF = 0;
// }
// // Check to see if we have an interrupt on ADC
// if (PIR1bits.ADIF) {
// // Call the interrupt handler
// adc_interrupt_handler();
//
// // Clear the interrupt flag
// PIR1bits.ADIF = 0;
// }
}