Rev 283 | Rev 286 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
// <editor-fold defaultstate="collapsed" desc="Configuration Bits">
// PIC16F1825 Configuration Bit Settings
// CONFIG1
#pragma config FOSC = INTOSC // Oscillator Selection (INTOSC oscillator: I/O function on CLKIN pin)
#pragma config WDTE = OFF // Watchdog Timer Enable (WDT enabled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)
#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR/VPP pin function is digital input)
#pragma config CP = OFF // Flash Program Memory Code Protection (Program memory code protection is disabled)
#pragma config CPD = OFF // Data Memory Code Protection (Data memory code protection is disabled)
#pragma config BOREN = ON // Brown-out Reset Enable (Brown-out Reset enabled)
#pragma config CLKOUTEN = OFF // Clock Out Enable (CLKOUT function is disabled. I/O or oscillator function on the CLKOUT pin)
#pragma config IESO = ON // Internal/External Switchover (Internal/External Switchover mode is enabled)
#pragma config FCMEN = ON // Fail-Safe Clock Monitor Enable (Fail-Safe Clock Monitor is enabled)
// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protection (Write protection off)
#pragma config PLLEN = ON // PLL Enable (4x PLL enabled)
#pragma config STVREN = ON // Stack Overflow/Underflow Reset Enable (Stack Overflow or Underflow will cause a Reset)
#pragma config BORV = LO // Brown-out Reset Voltage Selection (Brown-out Reset Voltage (Vbor), low trip point selected.)
#pragma config LVP = OFF // Low-Voltage Programming Enable (High-voltage on MCLR/VPP must be used for programming)
// </editor-fold>
#include "defines.h"
#include "INTERRUPTS.h"
#include "PWM.h"
#include "I2C1.h"
#include "UART.h"
#include "CONTROLLER.h"
void Pins_Init(void) {
// Set all pins to digital I/O
ANSELA = 0x0;
ANSELC = 0x0;
// // Enable weak pull-up if WPU bit is set
// OPTION_REGbits.nWPUEN = 0;
// CCP2 on RC3
APFCON1bits.CCP2SEL = 0;
// TX/CK function on RA0
APFCON0bits.TXCKSEL = 1;
// RX/DT function on RA1
APFCON0bits.RXDTSEL = 1;
LED_1_LAT = 1;
LED_1_TRIS = 0;
LED_2_LAT = 0;
LED_2_TRIS = 0;
CCP_1_LAT = 0;
CCP_1_TRIS = 0;
CCP_2_LAT = 0;
CCP_2_TRIS = 0;
}
void LED_1_On(void) {
LED_1_LAT = 0;
}
void LED_1_Off(void) {
LED_1_LAT = 1;
}
void LED_2_On(void) {
LED_2_LAT = 1;
}
void LED_2_Off(void) {
LED_2_LAT = 0;
}
int main(void) {
// Set internal oscillator speed to 32MHz
OSCCONbits.SPLLEN = 1; // 4x PLL enable (overwritten by config bits)
OSCCONbits.IRCF = 0xE; // Base frequency @ 8MHz
OSCCONbits.SCS = 0b00; // System clock determined by config bits
// Initialize I/O
Pins_Init();
// Initialize PWM
PWM_1_Init();
PWM_2_Init();
// Initialize I2C
I2C1_DATA i2c_data;
I2C1_Init(&i2c_data);
I2C1_Configure_Master(I2C_100KHZ);
UART_DATA uart_data;
UART_Init(&uart_data);
Controller_Init();
// Initialize interrupts
Interrupt_Init();
Interrupt_Enable();
PWM_1_Set(PWM_NOMINAL);
PWM_2_Set(PWM_NOMINAL);
LED_1_On();
LED_2_On();
__delay_ms(1000);
LED_1_Off();
LED_2_Off();
CTRL_BTN_STATUS ctrl;
Controller_Read(&ctrl);
uint16_t pwm_left = PWM_NOMINAL;
uint16_t pwm_right = PWM_NOMINAL;
#ifdef CONTROL_FROM_UART
uint8_t buffer[32];
uint8_t length;
uint8_t uart_state = UART_STATE_READ_CMD;
uint8_t uart_cmd;
while(1) {
length = UART_Read(buffer);
for (uint8_t i = 0; i < length; i++) {
if (uart_state == UART_STATE_READ_CMD) {
if (buffer[i] == UART_CMD_RESET) {
RESET();
} else {
// Read and save first byte (command)
uart_cmd = buffer[i];
uart_state = UART_STATE_READ_DATA;
}
} else if (uart_state == UART_STATE_READ_DATA) {
uart_state = UART_STATE_READ_CMD;
// Process received data
if (uart_cmd == UART_CMD_LEFT_FORWARD) {
pwm_left = PWM_NOMINAL + (uint16_t)(buffer[i] * 2);
if (buffer[i] != 0) LED_2_On();
else LED_2_Off();
} else if (uart_cmd == UART_CMD_LEFT_BACKWARD) {
pwm_left = PWM_NOMINAL - (uint16_t)(buffer[i] * 2);
if (buffer[i] != 0) LED_2_On();
else LED_2_Off();
} else if (uart_cmd == UART_CMD_RIGHT_FORWARD) {
pwm_right = PWM_NOMINAL + (uint16_t)(buffer[i] * 2);
if (buffer[i] != 0) LED_1_On();
else LED_1_Off();
} else if (uart_cmd == UART_CMD_RIGHT_BACKWARD) {
pwm_right = PWM_NOMINAL - (uint16_t)(buffer[i] * 2);
if (buffer[i] != 0) LED_1_On();
else LED_1_Off();
}
if (pwm_left > PWM_MAX)
pwm_left = PWM_MAX;
if (pwm_left < PWM_MIN)
pwm_left = PWM_MIN;
if (pwm_right > PWM_MAX)
pwm_right = PWM_MAX;
if (pwm_right < PWM_MIN)
pwm_right = PWM_MIN;
PWM_1_Set(pwm_right);
PWM_2_Set(pwm_left);
}
}
}
#endif
#ifdef CONTROL_FROM_CONTROLLER
uint8_t median;
int16_t L_X, L_Y, R_X, R_Y;
while (1) {
if (!Controller_Read(&ctrl)) {
median = ctrl.REF / 2;
L_X = (int16_t)median - (int16_t)ctrl.L_X_CH;
L_Y = (int16_t)median - (int16_t)ctrl.L_Y_CH;
R_X = (int16_t)median - (int16_t)ctrl.R_X_CH;
R_Y = (int16_t)median - (int16_t)ctrl.R_Y_CH;
// Left stick = throttle, Right stick = steering
// if (L_X > -5 && L_X < 5 &&
// R_Y > -5 && R_Y < 5) {
// pwm_left = PWM_NOMINAL;
// pwm_right = PWM_NOMINAL;
// } else {
// pwm_left = PWM_NOMINAL + (L_X * 4);
// pwm_right = PWM_NOMINAL + (L_X * 4);
//
// pwm_left += R_Y * 4;
// pwm_right -= R_Y * 4;
// }
// Left stick = left control, Right stick = right control
if (L_X > -5 && L_X < 5 &&
R_X > -5 && R_X < 5) {
pwm_left = PWM_NOMINAL;
pwm_right = PWM_NOMINAL;
} else {
pwm_left = PWM_NOMINAL + (R_X * 4);
pwm_right = PWM_NOMINAL + (L_X * 4);
}
if (L_X < -5 || L_X > 5) LED_2_On();
else LED_2_Off();
if (R_X < -5 || R_X > 5) LED_1_On();
else LED_1_Off();
if (pwm_left > PWM_MAX)
pwm_left = PWM_MAX;
if (pwm_left < PWM_MIN)
pwm_left = PWM_MIN;
if (pwm_right > PWM_MAX)
pwm_right = PWM_MAX;
if (pwm_right < PWM_MIN)
pwm_right = PWM_MIN;
PWM_1_Set(pwm_left);
PWM_2_Set(pwm_right);
} else {
PWM_1_Set(PWM_NOMINAL);
PWM_2_Set(PWM_NOMINAL);
LED_1_Off();
LED_2_Off();
}
}
#endif
}