Rev 253 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include "defines.h"
#include "ETHERNET.h"
static ETH_DATA *eth_data;
/* Function to convert from virtual address to physical address
See 3.4.1 in reference manual for explanation */
uint32_t VA_TO_PA(uint32_t ptr) {
uint32_t ret = ptr & 0x1FFFFFFF;
return ret;
}
void ETH_Init(ETH_DATA *data, void(*tx_callback)(void), void(*rx_callback)(void)) {
// Save a pointer to the descriptor tables
eth_data = data;
eth_data->tx_callback = tx_callback;
eth_data->rx_callback = rx_callback;
// Bring the PHY reset line high to initialize the PHY
PHY_RESET_TRIS = 0;
PHY_RESET_LAT = 0;
Delay_US(100);
PHY_RESET_LAT = 1;
INTDisableInterrupts();
// Initialize the I/O lines (dont actually need this)
ETH_MDC_TRIS = 0;
ETH_MDIO_TRIS = 1;
ETH_TXEN_TRIS = 0;
ETH_TXD0_TRIS = 0;
ETH_TXD1_TRIS = 0;
ETH_RXCLK_TRIS = 1;
ETH_RXDV_TRIS = 1;
ETH_RXD0_TRIS = 1;
ETH_RXD1_TRIS = 1;
ETH_RXERR_TRIS = 1;
eth_data->TX_descriptor_index = 0;
eth_data->RX_descriptor_index = 0;
// Initialize values in the descriptor tables
uint8_t i;
for (i = 0; i < ETH_TX_DESCRIPTOR_COUNT; i++) {
// Set the NPV values for each descriptor (linear list)
eth_data->TX_ED_table.descriptor[i].NPV = 0;
// Set the EOWN values for each descriptor
eth_data->TX_ED_table.descriptor[i].EOWN = 0;
// Assign a data buffer to each descriptor
eth_data->TX_ED_table.descriptor[i].BUFFER_ADDR = VA_TO_PA((uint32_t)eth_data->TX_ED_buffer[i]);
}
for (i = 0; i < ETH_RX_DESCRIPTOR_COUNT; i++) {
// Set the NPV values for each descriptor (linear list)
eth_data->RX_ED_table.descriptor[i].NPV = 0;
// Set the EOWN values for each descriptor
eth_data->RX_ED_table.descriptor[i].EOWN = 1;
// Assign a data buffer to each descriptor
eth_data->RX_ED_table.descriptor[i].BUFFER_ADDR = VA_TO_PA((uint32_t)eth_data->RX_ED_buffer[i]);
}
// On the last descriptor, save the address to the beginning of the list
eth_data->TX_ED_table.descriptor[ETH_TX_DESCRIPTOR_COUNT-1].NPV = 1;
eth_data->RX_ED_table.descriptor[ETH_RX_DESCRIPTOR_COUNT-1].NPV = 1;
// Set the last RX descriptor EOWN to software, thus using list configuration
// eth_data->TX_ED_table.descriptor[ETH_TX_DESCRIPTOR_COUNT-1].EOWN = 0;
// eth_data->RX_ED_table.descriptor[ETH_RX_DESCRIPTOR_COUNT-1].EOWN = 0;
// Loop the end of the descriptor table to the beginning (ring configuration)
eth_data->TX_ED_table.next_ED = VA_TO_PA((uint32_t)eth_data->TX_ED_table.descriptor);
eth_data->RX_ED_table.next_ED = VA_TO_PA((uint32_t)eth_data->RX_ED_table.descriptor);
// Save the head of the table to the corresponding ETH register
ETHTXST = VA_TO_PA((uint32_t)eth_data->TX_ED_table.descriptor);
ETHRXST = VA_TO_PA((uint32_t)eth_data->RX_ED_table.descriptor);
// Ethernet Initialization Sequence: see section 35.4.10 in the PIC32 Family Reference Manual
// Part 1. Ethernet Controller Initialization
IEC1bits.ETHIE = 0; // Disable ethernet interrupts
ETHCON1bits.ON = 0; // Disable the ethernet module
ETHCON1bits.TXRTS = 0; // Stop transmit logic
ETHCON1bits.RXEN = 0; // Stop receive logic
ETHCON1bits.AUTOFC = 0;
ETHCON1bits.MANFC = 0;
while (ETHSTATbits.ETHBUSY);
IFS1bits.ETHIF = 0; // Clear interrupt flags
ETHIENCLR = 0xFFFF; // Clear the ETHIEN register (interrupt enable)
// Part 2. MAC Init
EMAC1CFG1bits.SOFTRESET = 1; // Put the MACMII in reset
EMAC1CFG1bits.SOFTRESET = 0;
// Default I/O configuration, RMII operating mode
EMAC1SUPPbits.RESETRMII = 1; // Reset the MAC RMII module
EMAC1MCFGbits.RESETMGMT = 1; // Reset the MII management module
EMAC1MCFGbits.RESETMGMT = 0;
EMAC1MCFGbits.CLKSEL = 0x8; // Set the MIIM PHY clock to SYSCLK/40
while(EMAC1MINDbits.MIIMBUSY);
// Part 3. PHY Init
// Contrary to the ref manual, the ETH module needs to be enabled for the MIIM to work
ETHCON1bits.ON = 1; // Enable the ethernet module
uint16_t value;
// Reset the PHY chip
ETH_PHY_Write(PHY_ADDRESS, 0x0, 0x8000);
do {
value = ETH_PHY_Read(PHY_ADDRESS, 0x0);
} while (value & 0x8000 != 0);
// Delay to wait for the link to be established
Delay_MS(5000);
// Wait for auto-negotiation to finish
do {
value = ETH_PHY_Read(PHY_ADDRESS, 0x1F); // Acquire link status
} while (value & 0x1000 == 0);
ETHCON1bits.ON = 0; // Disable the ethernet module before changing other settings
// Part 4. MAC Configuration
EMAC1CFG1bits.RXENABLE = 1; // Enable the MAC receiving of frames
EMAC1CFG1bits.TXPAUSE = 1; // Enable PAUSE flow control frames
EMAC1CFG1bits.RXPAUSE = 1; // Enable processing of PAUSE control frames
EMAC1CFG2bits.AUTOPAD = 0; // No auto-detection for VLAN padding
EMAC1CFG2bits.VLANPAD = 0; // MAC does not perform padding of short frames
EMAC1CFG2bits.PADENABLE = 1; // Pad all short frames
EMAC1CFG2bits.CRCENABLE = 1; // Append a CRC to every frame
EMAC1CFG2bits.HUGEFRM = 1; // Allow frames of any length
EMAC1CFG2bits.LENGTHCK = 0; // Check the frame lengths to the length/type field
if ((value & 0x14) || (value & 0x18)) {
EMAC1CFG2bits.FULLDPLX = 1; // Operate in full-duplex mode
EMAC1IPGT = 0x15; // Back-to-back interpacket gap @ 0.96us/9.6us
// LED1_LAT = 1;
} else {
EMAC1CFG2bits.FULLDPLX = 0; // Operate in half-duplex mode
EMAC1IPGT = 0x12; // Back-to-back interpacket gap @ 0.96us/9.6us
// LED2_LAT = 1;
}
if ((value & 0x08) || (value & 0x18)) {
EMAC1SUPPbits.SPEEDRMII = 1; // 100Mbps mode
// LED3_LAT = 1;
} else {
EMAC1SUPPbits.SPEEDRMII = 0; // 10Mbps mode
// LED4_LAT = 1;
}
EMAC1IPGRbits.NB2BIPKTGP1 = 0xC; // Set some other delay gap values
EMAC1IPGRbits.NB2BIPKTGP2 = 0x12;
EMAC1CLRTbits.CWINDOW = 0x37; // Set collision window to count of frame bytes
EMAC1CLRTbits.RETX = 0xF; // Set number of retransmission attempts
EMAC1MAXF = 0x7F4; // Set the maximum frame length to 2046 bits
// Default MAC address is 00-04-A3-1A-4C-FC
// Set MAC address to 00-18-3E-00-D7-EB
EMAC1SA0 = 0xEBD7;
EMAC1SA1 = 0x003E;
EMAC1SA2 = 0x1800;
// Part 5. Ethernet Controller Initialization cont.
// Flow control is off by default!
ETHRXFCbits.HTEN = 0; // Disable hash table filtering
ETHRXFCbits.MPEN = 0; // Disable magic packet filtering
ETHRXFCbits.PMMODE = 0; // Disable pattern matching
ETHRXFCbits.CRCERREN = 0; // Disable CRC error collection filtering
ETHRXFCbits.CRCOKEN = 0; // Disable CRC filtering
ETHRXFCbits.RUNTERREN = 0; // Disable runt error collection filtering
ETHRXFCbits.RUNTEN = 0; // Disable runt filtering
ETHRXFCbits.UCEN = 1; // Enable unicast filtering
ETHRXFCbits.NOTMEEN = 0; // Disable acceptance of packets to other destinations
ETHRXFCbits.MCEN = 0; // Disable multicast filtering
ETHRXFCbits.BCEN = 0; // Disable broadcast filtering
ETHCON2bits.RXBUF_SZ = 0x7F; // Set RX data buffer size to 2032 bytes
EMAC1SUPPbits.RESETRMII = 0; // Bring the RMII module out of reset
ETHCON1bits.ON = 1; // Enable the ethernet module
ETHCON1bits.RXEN = 1; // Start receive logic
ETHIENbits.TXBUSEIE = 1; // Enable interrupt on transmit BVCI bus error
ETHIENbits.RXBUSEIE = 1; // Enable interrupt on receive BVCI bus error
// ETHIENbits.RXDONEIE = 1; // Enable interrupt on packet received
ETHIENbits.PKTPENDIE = 1; // Enable interrupt on packet pending
// ETHIENbits.RXACTIE = 1;
ETHIENbits.TXDONEIE = 1; // Enable interrupt on packet sent
ETHIENbits.TXABORTIE = 1; // Enable interrupt on packet send aborted
IPC12bits.ETHIP = 1; // Set interrupt priority to 1
IPC12bits.ETHIS = 1; // Set intererupt sub-priority to 1
IEC1bits.ETHIE = 1; // Enable ethernet interrupts
INTEnableInterrupts();
}
/* Reads from the specified register on the PHY chip */
uint16_t ETH_PHY_Read(uint8_t address, uint8_t reg) {
EMAC1MADR = reg | (address << 8);
EMAC1MCMDbits.READ = 1;
Nop();Nop();Nop();
while (EMAC1MINDbits.MIIMBUSY);
EMAC1MCMDbits.READ = 0;
return EMAC1MRDD;
}
/* Write to the specified register on the PHY chip */
void ETH_PHY_Write(uint8_t address, uint8_t reg, uint16_t value) {
EMAC1MADR = reg | (address << 8);
EMAC1MWTD = value;
Nop();Nop();Nop();
while (EMAC1MINDbits.MIIMBUSY);
}
/* Queries the number of pending packets */
uint8_t ETH_Recv_Queue(void) {
return ETHSTATbits.BUFCNT;
}
/* Function to read a single packet (<2014 bytes) */
uint8_t ETH_Read_Packet(uint8_t *buffer, uint16_t *length) {
uint16_t i, j;
uint16_t size;
uint8_t descriptor_index = eth_data->RX_descriptor_index;
// Look for the first descriptor where EOWN is cleared and SOP/EOP is set
for (i = 0; i < ETH_RX_DESCRIPTOR_COUNT; i++) {
if ((eth_data->RX_ED_table.descriptor[descriptor_index].EOWN == 0) &&
(eth_data->RX_ED_table.descriptor[descriptor_index].SOP == 1) &&
(eth_data->RX_ED_table.descriptor[descriptor_index].EOP == 1)) {
// Read the packet data values into the buffer
size = eth_data->RX_ED_table.descriptor[descriptor_index].BYTE_COUNT - 18;
*length = size;
for (j = 0; j < size - 18; j++) {
buffer[j] = eth_data->RX_ED_buffer[descriptor_index][j+14];
}
// Reset the descriptors
eth_data->RX_ED_table.descriptor[descriptor_index].SOP = 0;
eth_data->RX_ED_table.descriptor[descriptor_index].EOP = 0;
eth_data->RX_ED_table.descriptor[descriptor_index].EOWN = 1;
eth_data->RX_descriptor_index = (descriptor_index == ETH_RX_DESCRIPTOR_COUNT - 1) ? 0 : descriptor_index + 1;
ETHCON1bits.BUFCDEC = 1;
return 0;
} else {
descriptor_index = (descriptor_index == ETH_RX_DESCRIPTOR_COUNT - 1) ? 0 : descriptor_index + 1;
}
}
return 1;
}
/* Function to send a single packet (<2018 bytes) */
uint8_t ETH_Write_Packet(ETH_MAC_ADDRESS dest, ETH_MAC_ADDRESS src, uint16_t length, uint8_t *buffer) {
uint16_t i;
uint16_t write_index = 0;
uint16_t read_index = 0;
uint16_t descriptor_index = eth_data->TX_descriptor_index;
// Do a quick sanity check to ensure that we have enough memory to send the message
if (length > ETH_TX_ED_BUFFER_SIZE - 14)
return 1;
// Fill the descriptor
eth_data->TX_ED_table.descriptor[descriptor_index].TSV.registers[0] = 0;
eth_data->TX_ED_table.descriptor[descriptor_index].TSV.registers[1] = 0;
eth_data->TX_ED_table.descriptor[descriptor_index].EOWN = 1;
eth_data->TX_ED_table.descriptor[descriptor_index].SOP = 1;
eth_data->TX_ED_table.descriptor[descriptor_index].EOP = 1;
for (i = 0; i < 6; i++) {
eth_data->TX_ED_buffer[descriptor_index][write_index] = dest.bytes[i];
write_index++;
}
for (i = 0; i < 6; i++) {
eth_data->TX_ED_buffer[descriptor_index][write_index] = src.bytes[i];
write_index++;
}
eth_data->TX_ED_buffer[descriptor_index][write_index] = length >> 8;
eth_data->TX_ED_buffer[descriptor_index][write_index+1] = length;
write_index += 2;
eth_data->TX_ED_table.descriptor[descriptor_index].BYTE_COUNT = length + 14;
for (i = 0; i < length; i++) {
eth_data->TX_ED_buffer[descriptor_index][write_index] = buffer[read_index];
write_index++;
read_index++;
}
// Wait for any previous transmits to finish before sending
while (ETHSTATbits.TXBUSY);
ETHCON1bits.TXRTS = 1;
while (ETHSTATbits.TXBUSY);
eth_data->TX_descriptor_index = (descriptor_index == ETH_TX_DESCRIPTOR_COUNT - 1) ? 0 : descriptor_index + 1;
return 0;
}
void __ISR(_ETH_VECTOR, ipl1) __ETH_Interrupt_Handler(void) {
uint32_t value = ETHIRQ;
if (ETHIRQbits.TXBUSE) {
ETHIRQbits.TXBUSE = 0;
}
if (ETHIRQbits.RXBUSE) {
ETHIRQbits.RXBUSE = 0;
}
// if (ETHIRQbits.RXDONE) {
// ETHIRQbits.RXDONE = 0;
// }
if (ETHIRQbits.PKTPEND) {
if (eth_data->rx_callback != NULL)
(*eth_data->rx_callback)();
ETHIRQbits.PKTPEND = 0;
}
if (ETHIRQbits.TXDONE) {
if (eth_data->tx_callback != NULL)
(*eth_data->tx_callback)();
ETHIRQbits.TXDONE = 0;
}
if (ETHIRQbits.TXABORT) {
ETHIRQbits.TXABORT = 0;
}
if (ETHIRQbits.RXBUFNA) {
// This is a serious error!
ETHIRQbits.RXBUFNA = 0;
}
if (ETHIRQbits.RXOVFLW) {
// This is a serious error!
ETHIRQbits.RXOVFLW = 0;
}
IFS1bits.ETHIF = 0;
}