Subversion Repositories Code-Repo

Compare Revisions

Ignore whitespace Rev 120 → Rev 121

/PIC Stuff/PIC_27J13/main.c
1,16 → 1,16
#include "maindefs.h"
#include "Adafruit_GFX.h"
#include "interrupts.h"
#include "uart.h"
#include "i2c.h"
//#include "adc.h"
//#include "timers.h"
//#include "xbee.h"
//#include "led_driver.h"
//#include "pwm.h"
//#include "delays.h"
//#include "pin_interrupts.h"
#include "spi.h"
#include "nfc.h"
#include "led_backpack.h"
#include "oled_ssd1306.h"
#include "oled_ssd1331.h"
#include <usart.h>
#include <delays.h>
#include <string.h>
 
#pragma config WDTEN = OFF // Turn off watchdog timer
#pragma config XINST = OFF // Turn off extended instruction set
32,38 → 32,72
* RA6 - Oscillator
* RA7 - Oscillator
*
* RC0 -
* RC1 -
* RC2 -
* RC3 -
* RC4 -
* RC5 -
* RC6 - UART Debug Output
* RC7 - UART Debug Input
* RB0 - UART2 Tx
* RB1 - UART2 Rx
* RB2 - SPI2 MOSI
* RB3 - SPI2 MISO
* RB4 - SPI2 CLK
* RB5 - SPI2 D/C
* RB6 - SPI2 RESET
* RB7 - SPI2 CS
*
* RB0 -
* RB1 -
* RB2 -
* RB3 -
* RB4 -
* RB5 -
* RB6 -
* RB7 -
* RC0 -
* RC1 - IRQ
* RC2 - Reset
* RC3 - I2C CLK
* RC4 - I2C DATA
* RC5 -
* RC6 - UART1 Tx
* RC7 - UART1 Rx
* ---------------------------- */
 
//static I2C_DATA i2c_data;
//static XBEE_DATA xbee_data;
#ifdef _TEST_UART
 
void main(void) {
unsigned char length = 0;
unsigned char buffer[100];
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
while (1) {
 
length = UART1_Read((char *) buffer);
if (length != 0) {
UART1_WriteB((char *) buffer, length);
}
 
Delay10KTCYx(255);
Delay10KTCYx(255);
}
}
#endif
 
#ifdef _TEST_I2C_MASTER
 
void main(void) {
unsigned char i = 0;
unsigned char length = 0;
unsigned char result = 0;
unsigned char test[8] = "ASDF123";
unsigned char buffer[100];
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
73,69 → 107,87
 
UART1_Init(); // Initialize the UART handler code
I2C_Init(); // Initialize the I2C handler code
// xbee_init(&xbee_data); // Initialize the XBee handler code
// adc_init(); // Initialize the ADC
// timers_init(); // Initialize timers
// port_b_int_init(); // Initialze Port B interrupt handler
// pwm_init(); // Initialize the PWM output driver
 
I2C_Configure_Master();
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
// Loop and process recieved messages from interrupts;
 
// I2C_Configure_Master();
while (1) {
 
buffer[0] = 0xBB;
 
I2C_Master_Send(0x30, 1, buffer);
result = I2C_Get_Status();
while (!result) {
result = I2C_Get_Status();
}
DBG_PRINT_MAIN("S:%X ", result);
 
I2C_Master_Recv(0x30, 2);
result = I2C_Get_Status();
while (!result) {
result = I2C_Get_Status();
}
DBG_PRINT_MAIN("S:%X ", result);
length = I2C_Read_Buffer(buffer);
DBG_PRINT_MAIN("L:%d D:", length);
for (i = 0; i < length; i++) {
DBG_PRINT_MAIN("%c ", buffer[i]);
}
 
I2C_Master_Restart(0x30, 0xBB, 2);
result = I2C_Get_Status();
while (!result) {
result = I2C_Get_Status();
}
DBG_PRINT_MAIN("S:%X ", result);
length = I2C_Read_Buffer(buffer);
DBG_PRINT_MAIN("L:%d D:", length);
for (i = 0; i < length; i++) {
DBG_PRINT_MAIN("%c ", buffer[i]);
}
 
DBG_PRINT_MAIN("\r\n");
 
Delay10KTCYx(255);
Delay10KTCYx(255);
}
}
#endif
 
#ifdef _TEST_I2C_SLAVE
 
void main(void) {
unsigned char i = 0;
unsigned char length = 0;
unsigned char result = 0;
unsigned char buffer[100];
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
I2C_Init(); // Initialize the I2C handler code
 
I2C_Configure_Slave(0x30);
 
TRISCbits.TRISC0 = 0;
TRISCbits.TRISC1 = 0;
TRISCbits.TRISC2 = 0;
LATCbits.LATC0 = 0;
LATCbits.LATC1 = 0;
LATCbits.LATC2 = 0;
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
while (1) {
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
/* UART Test */
// length = UART1_Read((char *)buffer);
// if (length != 0) {
// UART1_WriteB((char *)buffer, length) ;
// }
/* UART Test*/
 
/* I2C Master Test */
// buffer[0] = 0xBB;
// I2C_Master_Send(0x30, 1, buffer);
//
// result = I2C_Get_Status();
// while (!result) {
// result = I2C_Get_Status();
// }
// DBG_PRINT_MAIN("%x ", result);
//
// I2C_Master_Recv(0x30, 2);
//
// result = I2C_Get_Status();
// while (!result) {
// result = I2C_Get_Status();
// }
// DBG_PRINT_MAIN("%x ", result);
//
// I2C_Master_Restart(0x30, 0xBB, 2);
//
// result = I2C_Get_Status();
// while (!result) {
// result = I2C_Get_Status();
// }
// DBG_PRINT_MAIN("%x\r\n", result);
/* I2C Master Test */
 
/* I2C Slave Receive Test */
result = I2C_Get_Status();
while (!result) {
result = I2C_Get_Status();
147,6 → 199,480
DBG_PRINT_MAIN("%X ", buffer[i]);
}
DBG_PRINT_MAIN("\r\n");
/* I2C Slave Receive Test */
 
Delay10KTCYx(255);
Delay10KTCYx(255);
}
}
}
#endif
 
#ifdef _TEST_NFC
 
void main(void) {
unsigned char i = 0;
unsigned char length = 0;
unsigned char result = 0;
NFC_FIRMWARE_VERSION version;
unsigned char buffer[50];
 
// NFC stuff
unsigned char uid[7];
unsigned char uidLen;
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
I2C_Init(); // Initialize the I2C handler code
NFC_Init(); // Initialize the NFC chip (uses I2C)
 
I2C_Configure_Master(I2C_400KHZ);
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
version = NFC_getFirmwareVersion();
while (!version.IC) {
DBG_PRINT_MAIN("Waiting for NFC board..\r\n");
Delay10KTCYx(3);
version = NFC_getFirmwareVersion();
}
DBG_PRINT_MAIN("Found chip PN5%X\r\n", version.IC);
DBG_PRINT_MAIN("Firmware ver. %d.%d\r\n", version.Ver, version.Rev);
NFC_SAMConfig();
 
while (1) {
 
// This call will hang until the NFC chip replies (card detected)
if (NFC_readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLen)) {
DBG_PRINT_MAIN("Card Found!\r\n");
DBG_PRINT_MAIN("UID Length: %d bytes\r\n", uidLen);
DBG_PRINT_MAIN("UID: ");
for (i = 0; i < uidLen; i++) {
DBG_PRINT_MAIN("%02X ", uid[i]);
}
DBG_PRINT_MAIN("\r\n");
}
 
// Delay10KTCYx(255);
// Delay10KTCYx(255);
}
}
#endif
 
#ifdef _TEST_LED_BACKPACK
 
void main(void) {
unsigned char i = 0;
unsigned char length = 0;
unsigned char buffer[100];
unsigned int counter = 0;
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
I2C_Init(); // Initialize the I2C handler code
LED_Init(); // Initialize the LED backpack (uses I2C);
 
I2C_Configure_Master(I2C_400KHZ);
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
LED_Start();
LED_writeDigitNum(0, 1, 1);
LED_writeDigitNum(1, 2, 0);
LED_writeDigitNum(2, 3, 0);
LED_writeDigitNum(3, 4, 0);
LED_writeDisplay();
for (i = 0; i < 15; i++) {
LED_setBrightness(15 - i);
Delay10KTCYx(100);
}
for (i = 0; i < 15; i++) {
LED_setBrightness(i);
Delay10KTCYx(100);
}
LED_blinkRate(HT16K33_BLINK_OFF);
 
while (1) {
LED_writeNum(counter);
counter++;
if (counter > 9999)
counter = 0;
 
// Delay10KTCYx(255);
}
}
#endif
 
#ifdef _TEST_SPI
 
void main(void) {
unsigned char i = 0;
unsigned char length = 0;
unsigned char result = 0;
unsigned char buffer[100];
unsigned char test[8] = "ASDF123";
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
while (1) {
 
SPI2_Write(test, 7);
while (result != 7) {
length = SPI2_Buffer_Read(buffer);
if (length) {
result += length;
}
}
result = 0;
 
for (i = 0; i < result; i++) {
DBG_PRINT_MAIN("%X ", buffer[i]);
}
DBG_PRINT_MAIN("\r\n");
 
Delay10KTCYx(255);
Delay10KTCYx(255);
}
}
#endif
 
#ifdef _TEST_SSD1306_OLED
 
void main(void) {
unsigned int i = 0;
unsigned long l = 0;
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
SSD1306_Init(); // Initialize the OLED code
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
SSD1306_Begin(SSD1306_SWITCHCAPVCC);
 
SSD1306_Display(); // Show splashscreen
 
while (1) {
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// for (i = 0; i < 32; i++) {
// SSD1306_Draw_Pixel(i, i, WHITE);
// }
// SSD1306_Display();
 
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_DrawLine();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_DrawRect();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_FillRect();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_DrawCircle();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// GFX_fillCircle(GFX_width() / 2, GFX_height() / 2, 10, WHITE);
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_DrawRoundRect();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_FillRoundRect();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_DrawTriangle();
// SSD1306_Display();
//
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_FillTriangle();
// SSD1306_Display();
 
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// SSD1306_Test_DrawChar();
// SSD1306_Display();
 
// Delay10KTCYx(255);
// Delay10KTCYx(255);
// SSD1306_Clear_Display();
// GFX_setTextSize(1);
// GFX_setTextColor(WHITE);
// GFX_setCursor(0,0);
// GFX_writeString("Hello World!\n");
//// GFX_setTextColorBG(BLACK, WHITE);
// i = 65535;
// GFX_writeString("%u %d\n", i, i);
//// GFX_setTextSize(2);
//// GFX_setTextColor(WHITE);
// l = 0xDEADBEEF;
// GFX_writeString("0x%X", (long)l);
// SSD1306_Display();
 
SSD1306_Clear_Display();
GFX_setRotation(0);
GFX_setTextSize(1);
GFX_setTextColor(SSD1306_WHITE);
GFX_setCursor(0, 0);
GFX_writeString("%u", i);
i++;
SSD1306_Display();
 
}
}
#endif
 
#ifdef _TEST_SSD1331_OLED
 
void main(void) {
unsigned int i = 0;
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
SSD1331_Init(); // Initialize the OLED code
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
SSD1331_Begin();
 
while (1) {
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
SSD1331_Test_Pattern();
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_clearScreen();
GFX_setRotation(0);
GFX_setCursor(0, 0);
GFX_writeString("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa");
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_clearScreen();
GFX_setRotation(3);
GFX_setCursor(0, 0);
GFX_writeString("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa");
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
SSD1331_Test_DrawLines(SSD1331_YELLOW);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(3);
SSD1331_Test_DrawLines(SSD1331_BLUE);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
SSD1331_Test_DrawRect(SSD1331_GREEN);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(1);
SSD1331_Test_DrawRect(SSD1331_RED);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(2);
SSD1331_Test_DrawRect(SSD1331_BLUE);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(3);
SSD1331_Test_DrawRect(SSD1331_YELLOW);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
SSD1331_Test_FillRect(SSD1331_YELLOW, SSD1331_MAGENTA);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(3);
SSD1331_Test_FillRect(SSD1331_BLUE, SSD1331_GREEN);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
GFX_clearScreen();
SSD1331_Test_FillCircle(10, SSD1331_BLUE);
SSD1331_Test_DrawCircle(10, SSD1331_WHITE);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(3);
GFX_clearScreen();
SSD1331_Test_FillCircle(10, SSD1331_MAGENTA);
SSD1331_Test_DrawCircle(10, SSD1331_YELLOW);
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
SSD1331_Test_DrawTria();
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(3);
SSD1331_Test_DrawTria();
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(0);
SSD1331_Test_DrawRoundRect();
 
Delay10KTCYx(255);
Delay10KTCYx(255);
GFX_setRotation(3);
SSD1331_Test_DrawRoundRect();
 
// GFX_clearScreen();
// GFX_setRotation(3);
// GFX_setCursor(0,0);
// GFX_setTextColorBG(SSD1331_WHITE, SSD1331_BLACK);
// GFX_writeString("%u", i);
// i++;
}
}
#endif
 
#if !defined(_TEST_UART) && !defined(_TEST_I2C_MASTER) && \
!defined(_TEST_I2C_SLAVE) && !defined(_TEST_SPI) && \
!defined(_TEST_NFC) && !defined(_TEST_LED_BACKPACK) && \
!defined(_TEST_SSD1306_OLED) && !defined(_TEST_SSD1331_OLED)
 
void main(void) {
unsigned char i = 0;
unsigned char length = 0;
unsigned char result = 0;
unsigned char buffer[100];
 
/* --------------------- Oscillator Configuration --------------------- */
// OSCTUNEbits.PLLEN = 1; // Enable 4x PLL
OSCCONbits.IRCF = 0b111; // Set INTOSC postscaler to 8MHz
OSCCONbits.SCS = 0b00; // Use 96MHz PLL as primary clock source
/* -------------------------------------------------------------------- */
 
// Set all ports as digial I/O
ANCON0 = 0xFF;
ANCON1 = 0x1F;
 
UART1_Init(); // Initialize the UART handler code
I2C_Init(); // Initialize the I2C handler code
SPI2_Init(SPI2_FOSC_8); // Initialize the SPI module
SSD1331_Init(); // Initialize the SSD1331 OLED display (uses SPI2)
// NFC_Init(); // Initialize the NFC chip (uses I2C)
// LED_Init(); // Initialize the LED backpack (uses I2C);
 
I2C_Configure_Master(I2C_400KHZ);
SSD1331_Begin();
 
interrupt_enable(); // Enable high-priority interrupts and low-priority interrupts
interrupt_init(); // Initialize the interrupt priorities
 
DBG_PRINT_MAIN("\r\nBegin Program\r\n");
 
while (1) {
 
 
Delay10KTCYx(255);
Delay10KTCYx(255);
}
}
#endif