| 119 |
Kevin |
1 |
#include "maindefs.h"
|
|
|
2 |
#include "uart.h"
|
| 127 |
Kevin |
3 |
#include "xbee.h"
|
| 119 |
Kevin |
4 |
#include <string.h>
|
| 126 |
Kevin |
5 |
#include <stdio.h>
|
| 119 |
Kevin |
6 |
|
|
|
7 |
static UART_DATA uart_1_data;
|
| 128 |
Kevin |
8 |
static UART_DATA *uart_1_data_p = &uart_1_data;
|
| 119 |
Kevin |
9 |
|
|
|
10 |
void UART1_Init() {
|
|
|
11 |
// Configure the hardware USART device
|
|
|
12 |
// UART1 TX RC6
|
|
|
13 |
// UART1 RX RC7
|
|
|
14 |
|
| 122 |
Kevin |
15 |
TRISCbits.TRISC6 = 0; // Tx pin set to output
|
|
|
16 |
TRISCbits.TRISC7 = 1; // Rx pin set to input
|
| 119 |
Kevin |
17 |
|
|
|
18 |
BAUDCON1bits.BRG16 = 0; // 8-bit baud rate generator
|
| 122 |
Kevin |
19 |
SPBRG1 = 25; // Set UART speed to 115200 baud
|
|
|
20 |
TXSTA1bits.BRGH = 1; // High speed mode
|
|
|
21 |
TXSTA1bits.SYNC = 0; // Async mode
|
|
|
22 |
RCSTA1bits.SPEN = 1; // Serial port enable
|
|
|
23 |
TXSTA1bits.TX9 = 0; // 8 bit transmission
|
|
|
24 |
RCSTA1bits.RX9 = 0; // 8 bit reception
|
|
|
25 |
RCSTA1bits.CREN = 1; // Continuous receive mode
|
|
|
26 |
|
| 121 |
Kevin |
27 |
#ifdef _DEBUG // In debug mode we want to have TXEN constantly enabled
|
| 122 |
Kevin |
28 |
TXSTA1bits.TXEN = 1; // TX is always enabled
|
|
|
29 |
PIE1bits.TX1IE = 0; // Disable TX interrupt
|
| 121 |
Kevin |
30 |
#else
|
| 122 |
Kevin |
31 |
TXSTA1bits.TXEN = 0; // Enable transmission
|
|
|
32 |
PIE1bits.TX1IE = 1; // Enable TX interrupt
|
| 121 |
Kevin |
33 |
#endif
|
|
|
34 |
|
| 122 |
Kevin |
35 |
PIE1bits.RC1IE = 1; // Enable RX interrupt
|
| 119 |
Kevin |
36 |
|
|
|
37 |
// Initialize the buffer that holds UART messages
|
| 128 |
Kevin |
38 |
uart_1_data_p->buffer_in_read_ind = 0;
|
|
|
39 |
uart_1_data_p->buffer_in_write_ind = 0;
|
|
|
40 |
uart_1_data_p->buffer_in_len = 0;
|
|
|
41 |
uart_1_data_p->buffer_in_len_tmp = 0;
|
| 119 |
Kevin |
42 |
}
|
|
|
43 |
|
|
|
44 |
//void uart_2_init() {
|
|
|
45 |
// // Configure the PPS USART ports
|
|
|
46 |
//
|
|
|
47 |
// // UART2 RX Pin RP5
|
|
|
48 |
// RPINR16 = 5; // 5 is PPS RP5
|
|
|
49 |
// // UART2 TX Pin RP6
|
|
|
50 |
// RPOR6 = 6; // 6 is TX2/CK2 (EUSART2 Asynchronous Transmit/Asynchronous Clock Output)
|
|
|
51 |
//
|
|
|
52 |
// Open2USART(USART_TX_INT_OFF & // Interrupt on TX off
|
|
|
53 |
// USART_RX_INT_ON & // Interrupt on RX on
|
|
|
54 |
// USART_ASYNCH_MODE & // Operate in async mode
|
|
|
55 |
// USART_EIGHT_BIT & // Operate in 8-bit mode
|
|
|
56 |
// USART_CONT_RX & // Continuously recieve messages
|
|
|
57 |
// USART_BRGH_HIGH, 25); // Set UART speed to 115200 baud
|
|
|
58 |
//}
|
|
|
59 |
|
|
|
60 |
void UART1_Recv_Interrupt_Handler() {
|
|
|
61 |
unsigned char c;
|
| 122 |
Kevin |
62 |
if (PIR1bits.RC1IF) { // Check if data receive flag is set
|
|
|
63 |
c = RCREG1;
|
| 127 |
Kevin |
64 |
#ifdef UART1_RX_TO_BUFFER
|
| 122 |
Kevin |
65 |
// Save received data into buffer
|
| 128 |
Kevin |
66 |
uart_1_data_p->buffer_in[uart_1_data_p->buffer_in_write_ind] = c;
|
|
|
67 |
if (uart_1_data_p->buffer_in_write_ind == MAXUARTBUF - 1) {
|
|
|
68 |
uart_1_data_p->buffer_in_write_ind = 0;
|
| 119 |
Kevin |
69 |
} else {
|
| 128 |
Kevin |
70 |
uart_1_data_p->buffer_in_write_ind++;
|
| 122 |
Kevin |
71 |
}
|
|
|
72 |
|
|
|
73 |
// Store the last MAXUARTBUF values entered
|
| 128 |
Kevin |
74 |
if (uart_1_data_p->buffer_in_len_tmp < MAXUARTBUF) {
|
|
|
75 |
uart_1_data_p->buffer_in_len_tmp++;
|
| 122 |
Kevin |
76 |
} else {
|
| 128 |
Kevin |
77 |
if (uart_1_data_p->buffer_in_read_ind == MAXUARTBUF - 1) {
|
|
|
78 |
uart_1_data_p->buffer_in_read_ind = 0;
|
| 119 |
Kevin |
79 |
} else {
|
| 128 |
Kevin |
80 |
uart_1_data_p->buffer_in_read_ind++;
|
| 119 |
Kevin |
81 |
}
|
|
|
82 |
}
|
| 122 |
Kevin |
83 |
|
|
|
84 |
// Update buffer size upon receiving newline (0x0D)
|
|
|
85 |
if (c == UART1_BREAK_CHAR) {
|
| 128 |
Kevin |
86 |
uart_1_data_p->buffer_in_len = uart_1_data_p->buffer_in_len_tmp;
|
|
|
87 |
uart_1_data_p->buffer_in_len_tmp = 0;
|
| 122 |
Kevin |
88 |
}
|
| 126 |
Kevin |
89 |
#endif
|
| 127 |
Kevin |
90 |
#ifdef UART1_RX_TO_XBEE
|
|
|
91 |
XBee_Serial_In(c);
|
| 126 |
Kevin |
92 |
#endif
|
| 119 |
Kevin |
93 |
}
|
| 122 |
Kevin |
94 |
|
| 127 |
Kevin |
95 |
if (RCSTA1bits.OERR == 1) {
|
| 119 |
Kevin |
96 |
// We've overrun the USART and must reset
|
| 122 |
Kevin |
97 |
RCSTA1bits.CREN = 0; // Reset UART1
|
| 119 |
Kevin |
98 |
RCSTA1bits.CREN = 1;
|
| 122 |
Kevin |
99 |
DBG_PRINT_UART("UART1: (ERROR) overrun\r\n");
|
|
|
100 |
TXSTA1bits.TXEN = 0; // Kill anything currently sending
|
| 119 |
Kevin |
101 |
}
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
//void uart_2_recv_interrupt_handler() {
|
|
|
105 |
// if (DataRdy2USART()) {
|
|
|
106 |
//// xbee_read_serial(Read2USART());
|
|
|
107 |
// }
|
|
|
108 |
//
|
|
|
109 |
// if (USART2_Status.OVERRUN_ERROR == 1) {
|
|
|
110 |
// // We've overrun the USART and must reset
|
|
|
111 |
// RCSTA2bits.CREN = 0; // Reset UART2
|
|
|
112 |
// RCSTA2bits.CREN = 1;
|
|
|
113 |
// }
|
|
|
114 |
//}
|
|
|
115 |
|
|
|
116 |
void UART1_Send_Interrupt_Handler() {
|
|
|
117 |
// Put remaining data in TSR for transmit
|
| 128 |
Kevin |
118 |
if (uart_1_data_p->buffer_out_ind != uart_1_data_p->buffer_out_len) {
|
|
|
119 |
TXREG1 = uart_1_data_p->buffer_out[uart_1_data_p->buffer_out_ind];
|
|
|
120 |
uart_1_data_p->buffer_out_ind++;
|
| 119 |
Kevin |
121 |
} else {
|
| 122 |
Kevin |
122 |
while (!TXSTA1bits.TRMT); // Wait for last byte to finish sending
|
|
|
123 |
TXSTA1bits.TXEN = 0; // End transmission and disable TX interrupt
|
| 128 |
Kevin |
124 |
uart_1_data_p->buffer_out_ind = 0;
|
|
|
125 |
uart_1_data_p->buffer_out_len = 0;
|
| 119 |
Kevin |
126 |
}
|
|
|
127 |
}
|
|
|
128 |
|
|
|
129 |
void UART1_WriteS(const rom char *fmt, ...) {
|
| 126 |
Kevin |
130 |
#ifdef _DEBUG
|
|
|
131 |
unsigned char i;
|
| 119 |
Kevin |
132 |
va_list args;
|
| 126 |
Kevin |
133 |
va_start(args, fmt);
|
| 128 |
Kevin |
134 |
vsprintf((char *) uart_1_data_p->buffer_out, fmt, args);
|
| 126 |
Kevin |
135 |
va_end(args);
|
| 128 |
Kevin |
136 |
uart_1_data_p->buffer_out_len = strlen((char *) uart_1_data_p->buffer_out);
|
|
|
137 |
uart_1_data_p->buffer_out_ind = 1;
|
|
|
138 |
for (i = 0; i < uart_1_data_p->buffer_out_len; i++) {
|
|
|
139 |
TXREG1 = uart_1_data_p->buffer_out[i];
|
| 126 |
Kevin |
140 |
Nop();
|
| 127 |
Kevin |
141 |
while (!PIR1bits.TX1IF); // Wait for byte to be transmitted
|
| 126 |
Kevin |
142 |
}
|
|
|
143 |
#else
|
|
|
144 |
va_list args;
|
| 122 |
Kevin |
145 |
while (TXSTA1bits.TXEN); // Wait for previous message to finish sending
|
| 119 |
Kevin |
146 |
va_start(args, fmt);
|
| 128 |
Kevin |
147 |
vsprintf((char *) uart_1_data_p->buffer_out, fmt, args);
|
| 119 |
Kevin |
148 |
va_end(args);
|
| 128 |
Kevin |
149 |
uart_1_data_p->buffer_out_len = strlen((char *) uart_1_data_p->buffer_out);
|
|
|
150 |
uart_1_data_p->buffer_out_ind = 1;
|
|
|
151 |
TXREG1 = uart_1_data_p->buffer_out[0]; // Put first byte in TSR
|
| 122 |
Kevin |
152 |
TXSTA1bits.TXEN = 1; // Begin transmission
|
| 126 |
Kevin |
153 |
#endif
|
| 119 |
Kevin |
154 |
}
|
|
|
155 |
|
|
|
156 |
void UART1_WriteB(const char *msg, unsigned char length) {
|
|
|
157 |
unsigned char i;
|
| 126 |
Kevin |
158 |
#ifdef _DEBUG
|
|
|
159 |
for (i = 0; i < length; i++) {
|
|
|
160 |
TXREG1 = msg[i];
|
|
|
161 |
Nop();
|
| 127 |
Kevin |
162 |
while (!PIR1bits.TX1IF); // Wait for byte to be transmitted
|
| 126 |
Kevin |
163 |
}
|
|
|
164 |
#else
|
| 122 |
Kevin |
165 |
while (TXSTA1bits.TXEN); // Wait for previous message to finish sending
|
| 128 |
Kevin |
166 |
uart_1_data_p->buffer_out_len = length;
|
|
|
167 |
uart_1_data_p->buffer_out_ind = 1;
|
| 122 |
Kevin |
168 |
for (i = 0; i < length; i++) {
|
| 128 |
Kevin |
169 |
uart_1_data_p->buffer_out[i] = msg[i];
|
| 119 |
Kevin |
170 |
}
|
| 128 |
Kevin |
171 |
TXREG1 = uart_1_data_p->buffer_out[0]; // Put first byte in TSR
|
| 122 |
Kevin |
172 |
TXSTA1bits.TXEN = 1; // Begin transmission
|
| 126 |
Kevin |
173 |
#endif
|
| 119 |
Kevin |
174 |
}
|
|
|
175 |
|
| 127 |
Kevin |
176 |
void UART1_WriteC(const unsigned char c) {
|
|
|
177 |
#ifdef _DEBUG
|
|
|
178 |
TXREG1 = c;
|
|
|
179 |
Nop();
|
|
|
180 |
while (!PIR1bits.TX1IF);
|
|
|
181 |
#else
|
|
|
182 |
while (TXSTA1bits.TXEN);
|
| 128 |
Kevin |
183 |
uart_1_data_p->buffer_out_len = 1;
|
|
|
184 |
uart_1_data_p->buffer_out_ind = 1;
|
| 127 |
Kevin |
185 |
TXREG1 = c;
|
|
|
186 |
TXSTA1bits.TXEN = 1;
|
|
|
187 |
#endif
|
|
|
188 |
|
|
|
189 |
}
|
|
|
190 |
|
| 122 |
Kevin |
191 |
unsigned char UART1_Buffer_Len() {
|
| 128 |
Kevin |
192 |
return uart_1_data_p->buffer_in_len;
|
| 122 |
Kevin |
193 |
}
|
|
|
194 |
|
| 119 |
Kevin |
195 |
/* Reader interface to the UART buffer, returns the number of bytes read */
|
| 122 |
Kevin |
196 |
unsigned char UART1_Read_Buffer(unsigned char *buffer) {
|
| 119 |
Kevin |
197 |
unsigned char i = 0;
|
| 128 |
Kevin |
198 |
while (uart_1_data_p->buffer_in_len != 0) {
|
|
|
199 |
buffer[i] = uart_1_data_p->buffer_in[uart_1_data_p->buffer_in_read_ind];
|
| 119 |
Kevin |
200 |
i++;
|
| 128 |
Kevin |
201 |
if (uart_1_data_p->buffer_in_read_ind == MAXUARTBUF - 1) {
|
|
|
202 |
uart_1_data_p->buffer_in_read_ind = 0;
|
| 119 |
Kevin |
203 |
} else {
|
| 128 |
Kevin |
204 |
uart_1_data_p->buffer_in_read_ind++;
|
| 119 |
Kevin |
205 |
}
|
| 128 |
Kevin |
206 |
uart_1_data_p->buffer_in_len--;
|
| 119 |
Kevin |
207 |
}
|
|
|
208 |
return i;
|
|
|
209 |
}
|