| 248 |
Kevin |
1 |
//----------------------------------------------------------------------------
|
|
|
2 |
// This file contains functions that allow the MSP430 device to access the
|
|
|
3 |
// SPI interface. There are multiple instances of each function;
|
|
|
4 |
// the one to be compiled is selected by the system variable
|
|
|
5 |
// SPI_SER_INTF, defined in "hal_hardware_board.h".
|
|
|
6 |
//----------------------------------------------------------------------------
|
|
|
7 |
|
|
|
8 |
|
|
|
9 |
//----------------------------------------------------------------------------
|
|
|
10 |
// void halSPISetup(void)
|
|
|
11 |
//
|
|
|
12 |
// DESCRIPTION:
|
|
|
13 |
// Configures the assigned interface to function as a SPI port and
|
|
|
14 |
// initializes it.
|
|
|
15 |
//----------------------------------------------------------------------------
|
|
|
16 |
// void halSPIWriteReg(char addr, char value)
|
|
|
17 |
//
|
|
|
18 |
// DESCRIPTION:
|
|
|
19 |
// Writes "value" to a single configuration register at address "addr".
|
|
|
20 |
//----------------------------------------------------------------------------
|
|
|
21 |
// void halSPIWriteBurstReg(char addr, char *buffer, char count)
|
|
|
22 |
//
|
|
|
23 |
// DESCRIPTION:
|
|
|
24 |
// Writes values to multiple configuration registers, the first register being
|
|
|
25 |
// at address "addr". First data byte is at "buffer", and both addr and
|
|
|
26 |
// buffer are incremented sequentially (within the CCxxxx and MSP430,
|
|
|
27 |
// respectively) until "count" writes have been performed.
|
|
|
28 |
//----------------------------------------------------------------------------
|
|
|
29 |
// char halSPIReadReg(char addr)
|
|
|
30 |
//
|
|
|
31 |
// DESCRIPTION:
|
|
|
32 |
// Reads a single configuration register at address "addr" and returns the
|
|
|
33 |
// value read.
|
|
|
34 |
//----------------------------------------------------------------------------
|
|
|
35 |
// void halSPIReadBurstReg(char addr, char *buffer, char count)
|
|
|
36 |
//
|
|
|
37 |
// DESCRIPTION:
|
|
|
38 |
// Reads multiple configuration registers, the first register being at address
|
|
|
39 |
// "addr". Values read are deposited sequentially starting at address
|
|
|
40 |
// "buffer", until "count" registers have been read.
|
|
|
41 |
//----------------------------------------------------------------------------
|
|
|
42 |
// char halSPIReadStatus(char addr)
|
|
|
43 |
//
|
|
|
44 |
// DESCRIPTION:
|
|
|
45 |
// Special read function for reading status registers. Reads status register
|
|
|
46 |
// at register "addr" and returns the value read.
|
|
|
47 |
//----------------------------------------------------------------------------
|
|
|
48 |
// void halSPIStrobe(char strobe)
|
|
|
49 |
//
|
|
|
50 |
// DESCRIPTION:
|
|
|
51 |
// Special write function for writing to command strobe registers. Writes
|
|
|
52 |
// to the strobe at address "addr".
|
|
|
53 |
//----------------------------------------------------------------------------
|
|
|
54 |
|
|
|
55 |
/* ***********************************************************
|
|
|
56 |
* THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR
|
|
|
57 |
* REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,
|
|
|
58 |
* INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
|
59 |
* FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR
|
|
|
60 |
* COMPLETENESS OF RESPONSES, RESULTS AND LACK OF NEGLIGENCE.
|
|
|
61 |
* TI DISCLAIMS ANY WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET
|
|
|
62 |
* POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
|
|
|
63 |
* INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE PROGRAM OR
|
|
|
64 |
* YOUR USE OF THE PROGRAM.
|
|
|
65 |
*
|
|
|
66 |
* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
|
|
|
67 |
* CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
|
|
|
68 |
* THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED
|
|
|
69 |
* OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT
|
|
|
70 |
* OF THIS AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM.
|
|
|
71 |
* EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF
|
|
|
72 |
* REMOVAL OR REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS
|
|
|
73 |
* OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, OR LOSS OF
|
|
|
74 |
* USE OR INTERRUPTION OF BUSINESS. IN NO EVENT WILL TI'S
|
|
|
75 |
* AGGREGATE LIABILITY UNDER THIS AGREEMENT OR ARISING OUT OF
|
|
|
76 |
* YOUR USE OF THE PROGRAM EXCEED FIVE HUNDRED DOLLARS
|
|
|
77 |
* (U.S.$500).
|
|
|
78 |
*
|
|
|
79 |
* Unless otherwise stated, the Program written and copyrighted
|
|
|
80 |
* by Texas Instruments is distributed as "freeware". You may,
|
|
|
81 |
* only under TI's copyright in the Program, use and modify the
|
|
|
82 |
* Program without any charge or restriction. You may
|
|
|
83 |
* distribute to third parties, provided that you transfer a
|
|
|
84 |
* copy of this license to the third party and the third party
|
|
|
85 |
* agrees to these terms by its first use of the Program. You
|
|
|
86 |
* must reproduce the copyright notice and any other legend of
|
|
|
87 |
* ownership on each copy or partial copy, of the Program.
|
|
|
88 |
*
|
|
|
89 |
* You acknowledge and agree that the Program contains
|
|
|
90 |
* copyrighted material, trade secrets and other TI proprietary
|
|
|
91 |
* information and is protected by copyright laws,
|
|
|
92 |
* international copyright treaties, and trade secret laws, as
|
|
|
93 |
* well as other intellectual property laws. To protect TI's
|
|
|
94 |
* rights in the Program, you agree not to decompile, reverse
|
|
|
95 |
* engineer, disassemble or otherwise translate any object code
|
|
|
96 |
* versions of the Program to a human-readable form. You agree
|
|
|
97 |
* that in no event will you alter, remove or destroy any
|
|
|
98 |
* copyright notice included in the Program. TI reserves all
|
|
|
99 |
* rights not specifically granted under this license. Except
|
|
|
100 |
* as specifically provided herein, nothing in this agreement
|
|
|
101 |
* shall be construed as conferring by implication, estoppel,
|
|
|
102 |
* or otherwise, upon you, any license or other right under any
|
|
|
103 |
* TI patents, copyrights or trade secrets.
|
|
|
104 |
*
|
|
|
105 |
* You may not use the Program in non-TI devices.
|
|
|
106 |
* ********************************************************* */
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
#ifndef _SPILIB_C
|
|
|
110 |
#define _SPILIB_C
|
|
|
111 |
//
|
|
|
112 |
//---------------------------------------------------------------
|
|
|
113 |
#include "hal_SPI.h"
|
|
|
114 |
#include "hal_hardware_board.h"
|
|
|
115 |
|
|
|
116 |
//#define withDMA
|
|
|
117 |
|
|
|
118 |
// SPI port functions
|
|
|
119 |
#if SPI_SER_INTF == SER_INTF_USART0
|
|
|
120 |
|
|
|
121 |
void halSPISetup(void)
|
|
|
122 |
{
|
|
|
123 |
UCTL0 = CHAR + SYNC + MM + SWRST; // 8-bit SPI Master **SWRST**
|
|
|
124 |
UTCTL0 = CKPL + SSEL1 + SSEL0 + STC; // SMCLK, 3-pin mode
|
|
|
125 |
UBR00 = 0x02; // UCLK/2
|
|
|
126 |
UBR10 = 0x00; // 0
|
|
|
127 |
UMCTL0 = 0x00; // No modulation
|
|
|
128 |
ME1 |= USPIE0; // Enable USART0 SPI mode
|
|
|
129 |
UCTL0 &= ~SWRST; // Initialize USART state machine
|
|
|
130 |
}
|
|
|
131 |
|
|
|
132 |
#elif SPI_SER_INTF == SER_INTF_USART1
|
|
|
133 |
|
|
|
134 |
void halSPISetup(void)
|
|
|
135 |
{
|
|
|
136 |
UCTL1 = CHAR + SYNC + MM + SWRST; // 8-bit SPI Master **SWRST**
|
|
|
137 |
UTCTL1 = CKPL + SSEL1 + SSEL0 + STC; // SMCLK, 3-pin mode
|
|
|
138 |
UBR01 = 0x02; // UCLK/2
|
|
|
139 |
UBR11 = 0x00; // 0
|
|
|
140 |
UMCTL1 = 0x00; // No modulation
|
|
|
141 |
ME2 |= USPIE1; // Enable USART1 SPI mode
|
|
|
142 |
UCTL1 &= ~SWRST; // Initialize USART state machine
|
|
|
143 |
}
|
|
|
144 |
|
|
|
145 |
#elif SPI_SER_INTF == SER_INTF_USCIA0
|
|
|
146 |
|
|
|
147 |
void halSPISetup(void)
|
|
|
148 |
{
|
|
|
149 |
UCA0CTL0 = UCMST+UCCKPL+UCMSB+UCSYNC; // 3-pin, 8-bit SPI master
|
|
|
150 |
UCA0CTL1 = UCSSEL_2 + UCSWRST; // SMCLK
|
|
|
151 |
halSPISetSpeedLow();
|
|
|
152 |
UCA0MCTL = 0;
|
|
|
153 |
SPI_PxSEL |= SPI_UCLK+SPI_SOMI+SPI_SIMO;
|
|
|
154 |
SPI_PxSEL2 |= SPI_UCLK+SPI_SOMI+SPI_SIMO;
|
|
|
155 |
SPI_PxOUT |= SPI_SIMO + SPI_SOMI + SPI_UCLK;
|
|
|
156 |
SPI_PxDIR |= SPI_SIMO + SPI_UCLK;
|
|
|
157 |
SPI_PxDIR &= ~SPI_SOMI;
|
|
|
158 |
UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
|
|
|
159 |
}
|
|
|
160 |
|
|
|
161 |
void halSPISetSpeedHigh(void) {
|
|
|
162 |
UCA0BR0 = 4; // CLK_FREQ = BRCLK / 4
|
|
|
163 |
UCA0BR1 = 0;
|
|
|
164 |
}
|
|
|
165 |
|
|
|
166 |
void halSPISetSpeedLow(void) {
|
|
|
167 |
UCA0BR0 = 32; // CLK_FREQ = BRCLK / 32
|
|
|
168 |
UCA0BR1 = 0;
|
|
|
169 |
}
|
|
|
170 |
|
|
|
171 |
#elif SPI_SER_INTF == SER_INTF_USCIA1
|
|
|
172 |
|
|
|
173 |
void halSPISetup(void)
|
|
|
174 |
{
|
|
|
175 |
UCA1CTL0 = UCMST+UCCKPL+UCMSB+UCSYNC; // 3-pin, 8-bit SPI master
|
|
|
176 |
UCA1CTL1 = UCSSEL_2 + UCSWRST; // SMCLK
|
|
|
177 |
halSPISetSpeedLow();
|
|
|
178 |
UCA1MCTL = 0;
|
|
|
179 |
UCA1CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
|
|
|
180 |
}
|
|
|
181 |
|
|
|
182 |
void halSPISetSpeedHigh(void) {
|
|
|
183 |
UCA1BR0 = 4; // CLK_FREQ = BRCLK / 4
|
|
|
184 |
UCA1BR1 = 0;
|
|
|
185 |
}
|
|
|
186 |
|
|
|
187 |
void halSPISetSpeedLow(void) {
|
|
|
188 |
UCA1BR0 = 32; // CLK_FREQ = BRCLK / 32
|
|
|
189 |
UCA1BR1 = 0;
|
|
|
190 |
}
|
|
|
191 |
|
|
|
192 |
#elif SPI_SER_INTF == SER_INTF_USCIB0
|
|
|
193 |
|
|
|
194 |
void halSPISetup(void)
|
|
|
195 |
{
|
| 251 |
Kevin |
196 |
UCB0CTL0 = UCMSB+UCMST+UCMODE_0; // 3-pin, 8-bit SPI master
|
|
|
197 |
halSPISetPolarityPhase(0, 0);
|
| 248 |
Kevin |
198 |
UCB0CTL1 = UCSSEL_2+UCSWRST; // SMCLK
|
|
|
199 |
halSPISetSpeedLow();
|
|
|
200 |
//UCB0MCTL = 0;
|
|
|
201 |
SPI_PxSEL |= SPI_UCLK+SPI_SOMI+SPI_SIMO;
|
| 251 |
Kevin |
202 |
SPI_PxSEL2 |= SPI_UCLK+SPI_SOMI+SPI_SIMO;
|
| 248 |
Kevin |
203 |
UCB0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
|
|
|
204 |
}
|
|
|
205 |
|
|
|
206 |
void halSPISetSpeedHigh(void) {
|
|
|
207 |
UCB0BR0 = 4; // CLK_FREQ = BRCLK / 4
|
|
|
208 |
UCB0BR1 = 0;
|
|
|
209 |
}
|
|
|
210 |
|
|
|
211 |
void halSPISetSpeedLow(void) {
|
|
|
212 |
UCB0BR0 = 32; // CLK_FREQ = BRCLK / 32
|
|
|
213 |
UCB0BR1 = 0;
|
|
|
214 |
}
|
|
|
215 |
|
| 251 |
Kevin |
216 |
void halSPISetPolarityPhase(char polarity, char phase) {
|
|
|
217 |
// Polarity 0 = inactive low, Polarity 1 = inactive high
|
|
|
218 |
// Phase 0 = Capture on first edge, change on following edge
|
|
|
219 |
// Phase 1 = Change on first edge, capture on following edge
|
|
|
220 |
// Note: Phase is inverted on MSP430!
|
|
|
221 |
UCB0CTL0 &= ~(UCCKPH + UCCKPL);
|
|
|
222 |
if (polarity == 0 && phase == 0) {
|
|
|
223 |
UCB0CTL0 |= UCCKPH;
|
|
|
224 |
} else if (polarity == 1 && phase == 0) {
|
|
|
225 |
UCB0CTL0 |= UCCKPH + UCCKPL;
|
|
|
226 |
} else if (polarity == 1 && phase == 1) {
|
|
|
227 |
UCB0CTL0 |= UCCKPL;
|
|
|
228 |
}
|
|
|
229 |
}
|
|
|
230 |
|
| 248 |
Kevin |
231 |
#elif SPI_SER_INTF == SER_INTF_USCIB1
|
|
|
232 |
|
|
|
233 |
void halSPISetup(void)
|
|
|
234 |
{
|
|
|
235 |
UCB1CTL0 = UCMST+UCCKPL+UCMSB+UCSYNC; // 3-pin, 8-bit SPI master
|
|
|
236 |
UCB1CTL1 = UCSSEL_2+UCSWRST; // SMCLK
|
|
|
237 |
halSPISetSpeedLow();
|
|
|
238 |
UCB1MCTL = 0;
|
|
|
239 |
UCB1CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
|
|
|
240 |
}
|
|
|
241 |
|
|
|
242 |
void halSPISetSpeedHigh(void) {
|
|
|
243 |
UCB1BR0 = 4; // CLK_FREQ = BRCLK / 4
|
|
|
244 |
UCB1BR1 = 0;
|
|
|
245 |
}
|
|
|
246 |
|
|
|
247 |
void halSPISetSpeedLow(void) {
|
|
|
248 |
UCB1BR0 = 32; // CLK_FREQ = BRCLK / 32
|
|
|
249 |
UCB1BR1 = 0;
|
|
|
250 |
}
|
|
|
251 |
|
|
|
252 |
#elif SPI_SER_INTF == SER_INTF_USI
|
|
|
253 |
|
|
|
254 |
void halSPISetup(void)
|
|
|
255 |
{
|
|
|
256 |
USICTL0 = USIPE7+USIPE6+USIPE5+USIMST+USIGE+USIOE+USISWRST; // Port, SPI master
|
|
|
257 |
USICKCTL = USISSEL_2; // SCLK = SMCLK
|
|
|
258 |
USICTL0 &= ~USISWRST; // USI released for operation
|
|
|
259 |
|
|
|
260 |
// USISRL = 0x00; // Ensure SDO low instead of high,
|
|
|
261 |
// USICNT = 1; // to avoid conflict with CCxxxx
|
|
|
262 |
}
|
|
|
263 |
|
|
|
264 |
void halSPISetSpeedHigh(void) {
|
|
|
265 |
USICKCTL = (USICKCTL & 0x1F) | USIDIV_2; // CLK_FREQ = BRCLK / 4
|
|
|
266 |
}
|
|
|
267 |
|
|
|
268 |
void halSPISetSpeedLow(void) {
|
|
|
269 |
USICKCTL = (USICKCTL & 0x1F) | USIDIV_5; // CLK_FREQ = BRCLK / 32
|
|
|
270 |
}
|
|
|
271 |
|
|
|
272 |
#elif SPI_SER_INTF == SER_INTF_BITBANG
|
|
|
273 |
|
|
|
274 |
void spi_bitbang_out(unsigned char);
|
|
|
275 |
unsigned char spi_bitbang_in();
|
|
|
276 |
unsigned char spi_bitbang_in_data;
|
|
|
277 |
|
|
|
278 |
void halSPISetup(void)
|
|
|
279 |
{
|
|
|
280 |
}
|
|
|
281 |
|
|
|
282 |
// Output eight-bit value using selected bit-bang pins
|
|
|
283 |
void spi_bitbang_out(unsigned char value)
|
|
|
284 |
{
|
|
|
285 |
char x;
|
|
|
286 |
|
|
|
287 |
for(x=8;x>0;x--)
|
|
|
288 |
{
|
|
|
289 |
|
|
|
290 |
if(value & 0x80) // If bit is high...
|
|
|
291 |
MMC_PxOUT |= MMC_SIMO;// Set SIMO high...
|
|
|
292 |
else
|
|
|
293 |
MMC_PxOUT &= ~MMC_SIMO;//Set SIMO low...
|
|
|
294 |
value = value << 1; // Rotate bits
|
|
|
295 |
|
|
|
296 |
MMC_PxOUT &= ~MMC_UCLK; // Set clock low
|
|
|
297 |
MMC_PxOUT |= MMC_UCLK; // Set clock high
|
|
|
298 |
}
|
|
|
299 |
}
|
|
|
300 |
|
|
|
301 |
// Input eight-bit value using selected bit-bang pins
|
|
|
302 |
unsigned char spi_bitbang_in()
|
|
|
303 |
{
|
|
|
304 |
char x=0;
|
|
|
305 |
int y;
|
|
|
306 |
|
|
|
307 |
for(y=8;y>0;y--)
|
|
|
308 |
{
|
|
|
309 |
MMC_PxOUT &= ~MMC_UCLK; // Set clock low
|
|
|
310 |
MMC_PxOUT |= MMC_UCLK; // Set clock high
|
|
|
311 |
|
|
|
312 |
x = x << 1; // Rotate bits
|
|
|
313 |
if(MMC_PxIN & MMC_SOMI) // If bit is high...
|
|
|
314 |
x |= 0x01; // input bit high
|
|
|
315 |
}
|
|
|
316 |
spi_bitbang_in_data = x;
|
|
|
317 |
return(x);
|
|
|
318 |
}
|
|
|
319 |
// Input eight-bit value using selected bit-bang pins
|
|
|
320 |
unsigned char spi_bitbang_inout(unsigned char value)
|
|
|
321 |
{
|
|
|
322 |
char x=0;
|
|
|
323 |
int y;
|
|
|
324 |
|
|
|
325 |
for(y=8;y>0;y--)
|
|
|
326 |
{
|
|
|
327 |
if(value & 0x80) // If bit is high...
|
|
|
328 |
MMC_PxOUT |= MMC_SIMO;// Set SIMO high...
|
|
|
329 |
else
|
|
|
330 |
MMC_PxOUT &= ~MMC_SIMO;//Set SIMO low...
|
|
|
331 |
value = value << 1; // Rotate bits
|
|
|
332 |
|
|
|
333 |
MMC_PxOUT &= ~MMC_UCLK; // Set clock low
|
|
|
334 |
MMC_PxOUT |= MMC_UCLK; // Set clock high
|
|
|
335 |
|
|
|
336 |
x = x << 1; // Rotate bits
|
|
|
337 |
if(MMC_PxIN & MMC_SOMI) // If bit is high...
|
|
|
338 |
x |= 0x01; // input bit high
|
|
|
339 |
}
|
|
|
340 |
spi_bitbang_in_data = x;
|
|
|
341 |
return(x);
|
|
|
342 |
}
|
|
|
343 |
#endif
|
|
|
344 |
|
|
|
345 |
|
|
|
346 |
//Send one byte via SPI
|
|
|
347 |
unsigned char spiSendByte(const unsigned char data)
|
|
|
348 |
{
|
|
|
349 |
while (halSPITXREADY == 0); // wait while not ready for TX
|
|
|
350 |
halSPI_SEND(data); // write
|
|
|
351 |
while (halSPIRXREADY == 0); // wait for RX buffer (full)
|
|
|
352 |
return (halSPIRXBUF);
|
|
|
353 |
}
|
|
|
354 |
|
|
|
355 |
|
|
|
356 |
//Read a frame of bytes via SPI
|
|
|
357 |
unsigned char spiReadFrame(unsigned char* pBuffer, unsigned int size)
|
|
|
358 |
{
|
|
|
359 |
#ifndef withDMA
|
|
|
360 |
unsigned long i = 0;
|
|
|
361 |
// clock the actual data transfer and receive the bytes; spi_read automatically finds the Data Block
|
|
|
362 |
for (i = 0; i < size; i++){
|
|
|
363 |
while (halSPITXREADY == 0); // wait while not ready for TX
|
|
|
364 |
halSPI_SEND(DUMMY_CHAR); // dummy write
|
|
|
365 |
while (halSPIRXREADY == 0); // wait for RX buffer (full)
|
|
|
366 |
pBuffer[i] = halSPIRXBUF;
|
|
|
367 |
}
|
|
|
368 |
#else
|
|
|
369 |
U1IFG &= ~(URXIFG1 + URXIFG1); /* clear flags */
|
|
|
370 |
/* Get the block */
|
|
|
371 |
/* DMA trigger is UART1 receive for both DMA0 and DMA1 */
|
|
|
372 |
DMACTL0 &= ~(DMA0TSEL_15 | DMA1TSEL_15);
|
|
|
373 |
DMACTL0 |= (DMA0TSEL_9 | DMA1TSEL_9);
|
|
|
374 |
/* Source DMA address: receive register. */
|
|
|
375 |
DMA0SA = U1RXBUF_;
|
|
|
376 |
/* Destination DMA address: the user data buffer. */
|
|
|
377 |
DMA0DA = (unsigned short)pBuffer;
|
|
|
378 |
/* The size of the block to be transferred */
|
|
|
379 |
DMA0SZ = size;
|
|
|
380 |
/* Configure the DMA transfer*/
|
|
|
381 |
DMA0CTL =
|
|
|
382 |
DMAIE | /* Enable interrupt */
|
|
|
383 |
DMADT_0 | /* Single transfer mode */
|
|
|
384 |
DMASBDB | /* Byte mode */
|
|
|
385 |
DMAEN | /* Enable DMA */
|
|
|
386 |
DMADSTINCR1 | DMADSTINCR0; /* Increment the destination address */
|
|
|
387 |
|
|
|
388 |
/* We depend on the DMA priorities here. Both triggers occur at
|
|
|
389 |
the same time, since the source is identical. DMA0 is handled
|
|
|
390 |
first, and retrieves the byte. DMA1 is triggered next, and
|
|
|
391 |
sends the next byte. */
|
|
|
392 |
/* Source DMA address: constant 0xFF (don't increment)*/
|
|
|
393 |
DMA1SA = U1TXBUF_;
|
|
|
394 |
/* Destination DMA address: the transmit buffer. */
|
|
|
395 |
DMA1DA = U1TXBUF_;
|
|
|
396 |
/* Increment the destination address */
|
|
|
397 |
/* The size of the block to be transferred */
|
|
|
398 |
DMA1SZ = count-1;
|
|
|
399 |
/* Configure the DMA transfer*/
|
|
|
400 |
DMA1CTL =
|
|
|
401 |
DMADT_0 | /* Single transfer mode */
|
|
|
402 |
DMASBDB | /* Byte mode */
|
|
|
403 |
DMAEN; /* Enable DMA */
|
|
|
404 |
|
|
|
405 |
/* Kick off the transfer by sending the first byte */
|
|
|
406 |
halMMC_SEND(0xFF);
|
|
|
407 |
_EINT(); LPM0; // wait till done
|
|
|
408 |
#endif
|
|
|
409 |
return(0);
|
|
|
410 |
}
|
|
|
411 |
|
|
|
412 |
|
|
|
413 |
//Send a frame of bytes via SPI
|
|
|
414 |
unsigned char spiSendFrame(unsigned char* pBuffer, unsigned int size)
|
|
|
415 |
{
|
|
|
416 |
#ifndef withDMA
|
|
|
417 |
unsigned long i = 0;
|
|
|
418 |
// clock the actual data transfer and receive the bytes; spi_read automatically finds the Data Block
|
|
|
419 |
for (i = 0; i < size; i++){
|
|
|
420 |
while (halSPITXREADY ==0); // wait while not ready for TX
|
|
|
421 |
halSPI_SEND(pBuffer[i]); // write
|
|
|
422 |
while (halSPIRXREADY ==0); // wait for RX buffer (full)
|
|
|
423 |
pBuffer[i] = halSPIRXBUF;
|
|
|
424 |
}
|
|
|
425 |
#else
|
|
|
426 |
/* Get the block */
|
|
|
427 |
/* DMA trigger is UART send */
|
|
|
428 |
DMACTL0 &= ~(DMA0TSEL_15);
|
|
|
429 |
DMACTL0 |= (DMA0TSEL_9);
|
|
|
430 |
/* Source DMA address: the data buffer. */
|
|
|
431 |
DMA0SA = (unsigned short)pBuffer;
|
|
|
432 |
/* Destination DMA address: the UART send register. */
|
|
|
433 |
DMA0DA = U1TXBUF_;
|
|
|
434 |
/* The size of the block to be transferred */
|
|
|
435 |
DMA0SZ = count;
|
|
|
436 |
/* Configure the DMA transfer*/
|
|
|
437 |
DMA0CTL =
|
|
|
438 |
DMAREQ | /* start transfer */
|
|
|
439 |
DMADT_0 | /* Single transfer mode */
|
|
|
440 |
DMASBDB | /* Byte mode */
|
|
|
441 |
DMAEN | /* Enable DMA */
|
|
|
442 |
DMASRCINCR1 | DMASRCINCR0; /* Increment the source address */
|
|
|
443 |
#endif
|
|
|
444 |
return(0);
|
|
|
445 |
}
|
|
|
446 |
|
|
|
447 |
|
|
|
448 |
#ifdef withDMA
|
|
|
449 |
#ifdef __IAR_SYSTEMS_ICC__
|
|
|
450 |
#if __VER__ < 200
|
|
|
451 |
interrupt[DACDMA_VECTOR] void DMA_isr(void)
|
|
|
452 |
#else
|
|
|
453 |
#pragma vector = DACDMA_VECTOR
|
|
|
454 |
__interrupt void DMA_isr(void)
|
|
|
455 |
#endif
|
|
|
456 |
#endif
|
|
|
457 |
|
|
|
458 |
#ifdef __CROSSWORKS__
|
|
|
459 |
void DMA_isr(void) __interrupt[DACDMA_VECTOR]
|
|
|
460 |
#endif
|
|
|
461 |
|
|
|
462 |
#ifdef __TI_COMPILER_VERSION__
|
|
|
463 |
__interrupt void DMA_isr(void);
|
|
|
464 |
DMA_ISR(DMA_isr)
|
|
|
465 |
__interrupt void DMA_isr(void)
|
|
|
466 |
#endif
|
|
|
467 |
{
|
|
|
468 |
DMA0CTL &= ~(DMAIFG);
|
|
|
469 |
LPM3_EXIT;
|
|
|
470 |
}
|
|
|
471 |
#endif
|
|
|
472 |
|
|
|
473 |
//---------------------------------------------------------------------
|
|
|
474 |
#endif /* _SPILIB_C */
|