| 141 |
Kevin |
1 |
#include "list.h"
|
|
|
2 |
#include <assert.h>
|
|
|
3 |
|
|
|
4 |
/* Our doubly linked lists have two header elements: the "head"
|
|
|
5 |
just before the first element and the "tail" just after the
|
|
|
6 |
last element. The `prev' link of the front header is null, as
|
|
|
7 |
is the `next' link of the back header. Their other two links
|
|
|
8 |
point toward each other via the interior elements of the list.
|
|
|
9 |
|
|
|
10 |
An empty list looks like this:
|
|
|
11 |
|
|
|
12 |
+------+ +------+
|
|
|
13 |
<---| head |<--->| tail |--->
|
|
|
14 |
+------+ +------+
|
|
|
15 |
|
|
|
16 |
A list with two elements in it looks like this:
|
|
|
17 |
|
|
|
18 |
+------+ +-------+ +-------+ +------+
|
|
|
19 |
<---| head |<--->| 1 |<--->| 2 |<--->| tail |<--->
|
|
|
20 |
+------+ +-------+ +-------+ +------+
|
|
|
21 |
|
|
|
22 |
The symmetry of this arrangement eliminates lots of special
|
|
|
23 |
cases in list processing. For example, take a look at
|
|
|
24 |
list_remove(): it takes only two pointer assignments and no
|
|
|
25 |
conditionals. That's a lot simpler than the code would be
|
|
|
26 |
without header elements.
|
|
|
27 |
|
|
|
28 |
(Because only one of the pointers in each header element is used,
|
|
|
29 |
we could in fact combine them into a single header element
|
|
|
30 |
without sacrificing this simplicity. But using two separate
|
|
|
31 |
elements allows us to do a little bit of checking on some
|
|
|
32 |
operations, which can be valuable.) */
|
|
|
33 |
|
|
|
34 |
static bool is_sorted (struct list_elem *a, struct list_elem *b,
|
|
|
35 |
list_less_func *less, void *aux);
|
|
|
36 |
|
|
|
37 |
/* Returns true if ELEM is a head, false otherwise. */
|
|
|
38 |
static inline bool
|
|
|
39 |
is_head (struct list_elem *elem)
|
|
|
40 |
{
|
|
|
41 |
return elem != NULL && elem->prev == NULL && elem->next != NULL;
|
|
|
42 |
}
|
|
|
43 |
|
|
|
44 |
/* Returns true if ELEM is an interior element,
|
|
|
45 |
false otherwise. */
|
|
|
46 |
static inline bool
|
|
|
47 |
is_interior (struct list_elem *elem)
|
|
|
48 |
{
|
|
|
49 |
return elem != NULL && elem->prev != NULL && elem->next != NULL;
|
|
|
50 |
}
|
|
|
51 |
|
|
|
52 |
/* Returns true if ELEM is a tail, false otherwise. */
|
|
|
53 |
static inline bool
|
|
|
54 |
is_tail (struct list_elem *elem)
|
|
|
55 |
{
|
|
|
56 |
return elem != NULL && elem->prev != NULL && elem->next == NULL;
|
|
|
57 |
}
|
|
|
58 |
|
|
|
59 |
/* Initializes LIST as an empty list. */
|
|
|
60 |
void
|
|
|
61 |
list_init (struct list *list)
|
|
|
62 |
{
|
|
|
63 |
assert (list != NULL);
|
|
|
64 |
list->head.prev = NULL;
|
|
|
65 |
list->head.next = &list->tail;
|
|
|
66 |
list->tail.prev = &list->head;
|
|
|
67 |
list->tail.next = NULL;
|
|
|
68 |
}
|
|
|
69 |
|
|
|
70 |
/* Returns the beginning of LIST. */
|
|
|
71 |
struct list_elem *
|
|
|
72 |
list_begin (struct list *list)
|
|
|
73 |
{
|
|
|
74 |
assert (list != NULL);
|
|
|
75 |
return list->head.next;
|
|
|
76 |
}
|
|
|
77 |
|
|
|
78 |
/* Returns the element after ELEM in its list. If ELEM is the
|
|
|
79 |
last element in its list, returns the list tail. Results are
|
|
|
80 |
undefined if ELEM is itself a list tail. */
|
|
|
81 |
struct list_elem *
|
|
|
82 |
list_next (struct list_elem *elem)
|
|
|
83 |
{
|
|
|
84 |
assert (is_head (elem) || is_interior (elem));
|
|
|
85 |
return elem->next;
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
/* Returns LIST's tail.
|
|
|
89 |
|
|
|
90 |
list_end() is often used in iterating through a list from
|
|
|
91 |
front to back. See the big comment at the top of list.h for
|
|
|
92 |
an example. */
|
|
|
93 |
struct list_elem *
|
|
|
94 |
list_end (struct list *list)
|
|
|
95 |
{
|
|
|
96 |
assert (list != NULL);
|
|
|
97 |
return &list->tail;
|
|
|
98 |
}
|
|
|
99 |
|
|
|
100 |
/* Returns the LIST's reverse beginning, for iterating through
|
|
|
101 |
LIST in reverse order, from back to front. */
|
|
|
102 |
struct list_elem *
|
|
|
103 |
list_rbegin (struct list *list)
|
|
|
104 |
{
|
|
|
105 |
assert (list != NULL);
|
|
|
106 |
return list->tail.prev;
|
|
|
107 |
}
|
|
|
108 |
|
|
|
109 |
/* Returns the element before ELEM in its list. If ELEM is the
|
|
|
110 |
first element in its list, returns the list head. Results are
|
|
|
111 |
undefined if ELEM is itself a list head. */
|
|
|
112 |
struct list_elem *
|
|
|
113 |
list_prev (struct list_elem *elem)
|
|
|
114 |
{
|
|
|
115 |
assert (is_interior (elem) || is_tail (elem));
|
|
|
116 |
return elem->prev;
|
|
|
117 |
}
|
|
|
118 |
|
|
|
119 |
/* Returns LIST's head.
|
|
|
120 |
|
|
|
121 |
list_rend() is often used in iterating through a list in
|
|
|
122 |
reverse order, from back to front. Here's typical usage,
|
|
|
123 |
following the example from the top of list.h:
|
|
|
124 |
|
|
|
125 |
for (e = list_rbegin (&foo_list); e != list_rend (&foo_list);
|
|
|
126 |
e = list_prev (e))
|
|
|
127 |
{
|
|
|
128 |
struct foo *f = list_entry (e, struct foo, elem);
|
|
|
129 |
...do something with f...
|
|
|
130 |
}
|
|
|
131 |
*/
|
|
|
132 |
struct list_elem *
|
|
|
133 |
list_rend (struct list *list)
|
|
|
134 |
{
|
|
|
135 |
assert (list != NULL);
|
|
|
136 |
return &list->head;
|
|
|
137 |
}
|
|
|
138 |
|
|
|
139 |
/* Return's LIST's head.
|
|
|
140 |
|
|
|
141 |
list_head() can be used for an alternate style of iterating
|
|
|
142 |
through a list, e.g.:
|
|
|
143 |
|
|
|
144 |
e = list_head (&list);
|
|
|
145 |
while ((e = list_next (e)) != list_end (&list))
|
|
|
146 |
{
|
|
|
147 |
...
|
|
|
148 |
}
|
|
|
149 |
*/
|
|
|
150 |
struct list_elem *
|
|
|
151 |
list_head (struct list *list)
|
|
|
152 |
{
|
|
|
153 |
assert (list != NULL);
|
|
|
154 |
return &list->head;
|
|
|
155 |
}
|
|
|
156 |
|
|
|
157 |
/* Return's LIST's tail. */
|
|
|
158 |
struct list_elem *
|
|
|
159 |
list_tail (struct list *list)
|
|
|
160 |
{
|
|
|
161 |
assert (list != NULL);
|
|
|
162 |
return &list->tail;
|
|
|
163 |
}
|
|
|
164 |
|
|
|
165 |
/* Inserts ELEM just before BEFORE, which may be either an
|
|
|
166 |
interior element or a tail. The latter case is equivalent to
|
|
|
167 |
list_push_back(). */
|
|
|
168 |
void
|
|
|
169 |
list_insert (struct list_elem *before, struct list_elem *elem)
|
|
|
170 |
{
|
|
|
171 |
assert (is_interior (before) || is_tail (before));
|
|
|
172 |
assert (elem != NULL);
|
|
|
173 |
|
|
|
174 |
elem->prev = before->prev;
|
|
|
175 |
elem->next = before;
|
|
|
176 |
before->prev->next = elem;
|
|
|
177 |
before->prev = elem;
|
|
|
178 |
}
|
|
|
179 |
|
|
|
180 |
/* Removes elements FIRST though LAST (exclusive) from their
|
|
|
181 |
current list, then inserts them just before BEFORE, which may
|
|
|
182 |
be either an interior element or a tail. */
|
|
|
183 |
void
|
|
|
184 |
list_splice (struct list_elem *before,
|
|
|
185 |
struct list_elem *first, struct list_elem *last)
|
|
|
186 |
{
|
|
|
187 |
assert (is_interior (before) || is_tail (before));
|
|
|
188 |
if (first == last)
|
|
|
189 |
return;
|
|
|
190 |
last = list_prev (last);
|
|
|
191 |
|
|
|
192 |
assert (is_interior (first));
|
|
|
193 |
assert (is_interior (last));
|
|
|
194 |
|
|
|
195 |
/* Cleanly remove FIRST...LAST from its current list. */
|
|
|
196 |
first->prev->next = last->next;
|
|
|
197 |
last->next->prev = first->prev;
|
|
|
198 |
|
|
|
199 |
/* Splice FIRST...LAST into new list. */
|
|
|
200 |
first->prev = before->prev;
|
|
|
201 |
last->next = before;
|
|
|
202 |
before->prev->next = first;
|
|
|
203 |
before->prev = last;
|
|
|
204 |
}
|
|
|
205 |
|
|
|
206 |
/* Inserts ELEM at the beginning of LIST, so that it becomes the
|
|
|
207 |
front in LIST. */
|
|
|
208 |
void
|
|
|
209 |
list_push_front (struct list *list, struct list_elem *elem)
|
|
|
210 |
{
|
|
|
211 |
list_insert (list_begin (list), elem);
|
|
|
212 |
}
|
|
|
213 |
|
|
|
214 |
/* Inserts ELEM at the end of LIST, so that it becomes the
|
|
|
215 |
back in LIST. */
|
|
|
216 |
void
|
|
|
217 |
list_push_back (struct list *list, struct list_elem *elem)
|
|
|
218 |
{
|
|
|
219 |
list_insert (list_end (list), elem);
|
|
|
220 |
}
|
|
|
221 |
|
|
|
222 |
/* Removes ELEM from its list and returns the element that
|
|
|
223 |
followed it. Undefined behavior if ELEM is not in a list.
|
|
|
224 |
|
|
|
225 |
It's not safe to treat ELEM as an element in a list after
|
|
|
226 |
removing it. In particular, using list_next() or list_prev()
|
|
|
227 |
on ELEM after removal yields undefined behavior. This means
|
|
|
228 |
that a naive loop to remove the elements in a list will fail:
|
|
|
229 |
|
|
|
230 |
** DON'T DO THIS **
|
|
|
231 |
for (e = list_begin (&list); e != list_end (&list); e = list_next (e))
|
|
|
232 |
{
|
|
|
233 |
...do something with e...
|
|
|
234 |
list_remove (e);
|
|
|
235 |
}
|
|
|
236 |
** DON'T DO THIS **
|
|
|
237 |
|
|
|
238 |
Here is one correct way to iterate and remove elements from a
|
|
|
239 |
list:
|
|
|
240 |
|
|
|
241 |
for (e = list_begin (&list); e != list_end (&list); e = list_remove (e))
|
|
|
242 |
{
|
|
|
243 |
...do something with e...
|
|
|
244 |
}
|
|
|
245 |
|
|
|
246 |
If you need to free() elements of the list then you need to be
|
|
|
247 |
more conservative. Here's an alternate strategy that works
|
|
|
248 |
even in that case:
|
|
|
249 |
|
|
|
250 |
while (!list_empty (&list))
|
|
|
251 |
{
|
|
|
252 |
struct list_elem *e = list_pop_front (&list);
|
|
|
253 |
...do something with e...
|
|
|
254 |
}
|
|
|
255 |
*/
|
|
|
256 |
struct list_elem *
|
|
|
257 |
list_remove (struct list_elem *elem)
|
|
|
258 |
{
|
|
|
259 |
assert (is_interior (elem));
|
|
|
260 |
elem->prev->next = elem->next;
|
|
|
261 |
elem->next->prev = elem->prev;
|
|
|
262 |
return elem->next;
|
|
|
263 |
}
|
|
|
264 |
|
|
|
265 |
/* Removes the front element from LIST and returns it.
|
|
|
266 |
Undefined behavior if LIST is empty before removal. */
|
|
|
267 |
struct list_elem *
|
|
|
268 |
list_pop_front (struct list *list)
|
|
|
269 |
{
|
|
|
270 |
struct list_elem *front = list_front (list);
|
|
|
271 |
list_remove (front);
|
|
|
272 |
return front;
|
|
|
273 |
}
|
|
|
274 |
|
|
|
275 |
/* Removes the back element from LIST and returns it.
|
|
|
276 |
Undefined behavior if LIST is empty before removal. */
|
|
|
277 |
struct list_elem *
|
|
|
278 |
list_pop_back (struct list *list)
|
|
|
279 |
{
|
|
|
280 |
struct list_elem *back = list_back (list);
|
|
|
281 |
list_remove (back);
|
|
|
282 |
return back;
|
|
|
283 |
}
|
|
|
284 |
|
|
|
285 |
/* Returns the front element in LIST.
|
|
|
286 |
Undefined behavior if LIST is empty. */
|
|
|
287 |
struct list_elem *
|
|
|
288 |
list_front (struct list *list)
|
|
|
289 |
{
|
|
|
290 |
assert (!list_empty (list));
|
|
|
291 |
return list->head.next;
|
|
|
292 |
}
|
|
|
293 |
|
|
|
294 |
/* Returns the back element in LIST.
|
|
|
295 |
Undefined behavior if LIST is empty. */
|
|
|
296 |
struct list_elem *
|
|
|
297 |
list_back (struct list *list)
|
|
|
298 |
{
|
|
|
299 |
assert (!list_empty (list));
|
|
|
300 |
return list->tail.prev;
|
|
|
301 |
}
|
|
|
302 |
|
|
|
303 |
/* Returns the number of elements in LIST.
|
|
|
304 |
Runs in O(n) in the number of elements. */
|
|
|
305 |
size_t
|
|
|
306 |
list_size (struct list *list)
|
|
|
307 |
{
|
|
|
308 |
struct list_elem *e;
|
|
|
309 |
size_t cnt = 0;
|
|
|
310 |
|
|
|
311 |
for (e = list_begin (list); e != list_end (list); e = list_next (e))
|
|
|
312 |
cnt++;
|
|
|
313 |
return cnt;
|
|
|
314 |
}
|
|
|
315 |
|
|
|
316 |
/* Returns true if LIST is empty, false otherwise. */
|
|
|
317 |
bool
|
|
|
318 |
list_empty (struct list *list)
|
|
|
319 |
{
|
|
|
320 |
return list_begin (list) == list_end (list);
|
|
|
321 |
}
|
|
|
322 |
|
|
|
323 |
/* Swaps the `struct list_elem *'s that A and B point to. */
|
|
|
324 |
static void
|
|
|
325 |
swap (struct list_elem **a, struct list_elem **b)
|
|
|
326 |
{
|
|
|
327 |
struct list_elem *t = *a;
|
|
|
328 |
*a = *b;
|
|
|
329 |
*b = t;
|
|
|
330 |
}
|
|
|
331 |
|
|
|
332 |
/* Reverses the order of LIST. */
|
|
|
333 |
void
|
|
|
334 |
list_reverse (struct list *list)
|
|
|
335 |
{
|
|
|
336 |
if (!list_empty (list))
|
|
|
337 |
{
|
|
|
338 |
struct list_elem *e;
|
|
|
339 |
|
|
|
340 |
for (e = list_begin (list); e != list_end (list); e = e->prev)
|
|
|
341 |
swap (&e->prev, &e->next);
|
|
|
342 |
swap (&list->head.next, &list->tail.prev);
|
|
|
343 |
swap (&list->head.next->prev, &list->tail.prev->next);
|
|
|
344 |
}
|
|
|
345 |
}
|
|
|
346 |
|
|
|
347 |
/* Returns true only if the list elements A through B (exclusive)
|
|
|
348 |
are in order according to LESS given auxiliary data AUX. */
|
|
|
349 |
static bool
|
|
|
350 |
is_sorted (struct list_elem *a, struct list_elem *b,
|
|
|
351 |
list_less_func *less, void *aux)
|
|
|
352 |
{
|
|
|
353 |
if (a != b)
|
|
|
354 |
while ((a = list_next (a)) != b)
|
|
|
355 |
if (less (a, list_prev (a), aux))
|
|
|
356 |
return false;
|
|
|
357 |
return true;
|
|
|
358 |
}
|
|
|
359 |
|
|
|
360 |
/* Finds a run, starting at A and ending not after B, of list
|
|
|
361 |
elements that are in nondecreasing order according to LESS
|
|
|
362 |
given auxiliary data AUX. Returns the (exclusive) end of the
|
|
|
363 |
run.
|
|
|
364 |
A through B (exclusive) must form a non-empty range. */
|
|
|
365 |
static struct list_elem *
|
|
|
366 |
find_end_of_run (struct list_elem *a, struct list_elem *b,
|
|
|
367 |
list_less_func *less, void *aux)
|
|
|
368 |
{
|
|
|
369 |
assert (a != NULL);
|
|
|
370 |
assert (b != NULL);
|
|
|
371 |
assert (less != NULL);
|
|
|
372 |
assert (a != b);
|
|
|
373 |
|
|
|
374 |
do
|
|
|
375 |
{
|
|
|
376 |
a = list_next (a);
|
|
|
377 |
}
|
|
|
378 |
while (a != b && !less (a, list_prev (a), aux));
|
|
|
379 |
return a;
|
|
|
380 |
}
|
|
|
381 |
|
|
|
382 |
/* Merges A0 through A1B0 (exclusive) with A1B0 through B1
|
|
|
383 |
(exclusive) to form a combined range also ending at B1
|
|
|
384 |
(exclusive). Both input ranges must be nonempty and sorted in
|
|
|
385 |
nondecreasing order according to LESS given auxiliary data
|
|
|
386 |
AUX. The output range will be sorted the same way. */
|
|
|
387 |
static void
|
|
|
388 |
inplace_merge (struct list_elem *a0, struct list_elem *a1b0,
|
|
|
389 |
struct list_elem *b1,
|
|
|
390 |
list_less_func *less, void *aux)
|
|
|
391 |
{
|
|
|
392 |
assert (a0 != NULL);
|
|
|
393 |
assert (a1b0 != NULL);
|
|
|
394 |
assert (b1 != NULL);
|
|
|
395 |
assert (less != NULL);
|
|
|
396 |
assert (is_sorted (a0, a1b0, less, aux));
|
|
|
397 |
assert (is_sorted (a1b0, b1, less, aux));
|
|
|
398 |
|
|
|
399 |
while (a0 != a1b0 && a1b0 != b1)
|
|
|
400 |
if (!less (a1b0, a0, aux))
|
|
|
401 |
a0 = list_next (a0);
|
|
|
402 |
else
|
|
|
403 |
{
|
|
|
404 |
a1b0 = list_next (a1b0);
|
|
|
405 |
list_splice (a0, list_prev (a1b0), a1b0);
|
|
|
406 |
}
|
|
|
407 |
}
|
|
|
408 |
|
|
|
409 |
/* Sorts LIST according to LESS given auxiliary data AUX, using a
|
|
|
410 |
natural iterative merge sort that runs in O(n lg n) time and
|
|
|
411 |
O(1) space in the number of elements in LIST. */
|
|
|
412 |
void
|
|
|
413 |
list_sort (struct list *list, list_less_func *less, void *aux)
|
|
|
414 |
{
|
|
|
415 |
size_t output_run_cnt; /* Number of runs output in current pass. */
|
|
|
416 |
|
|
|
417 |
assert (list != NULL);
|
|
|
418 |
assert (less != NULL);
|
|
|
419 |
|
|
|
420 |
/* Pass over the list repeatedly, merging adjacent runs of
|
|
|
421 |
nondecreasing elements, until only one run is left. */
|
|
|
422 |
do
|
|
|
423 |
{
|
|
|
424 |
struct list_elem *a0; /* Start of first run. */
|
|
|
425 |
struct list_elem *a1b0; /* End of first run, start of second. */
|
|
|
426 |
struct list_elem *b1; /* End of second run. */
|
|
|
427 |
|
|
|
428 |
output_run_cnt = 0;
|
|
|
429 |
for (a0 = list_begin (list); a0 != list_end (list); a0 = b1)
|
|
|
430 |
{
|
|
|
431 |
/* Each iteration produces one output run. */
|
|
|
432 |
output_run_cnt++;
|
|
|
433 |
|
|
|
434 |
/* Locate two adjacent runs of nondecreasing elements
|
|
|
435 |
A0...A1B0 and A1B0...B1. */
|
|
|
436 |
a1b0 = find_end_of_run (a0, list_end (list), less, aux);
|
|
|
437 |
if (a1b0 == list_end (list))
|
|
|
438 |
break;
|
|
|
439 |
b1 = find_end_of_run (a1b0, list_end (list), less, aux);
|
|
|
440 |
|
|
|
441 |
/* Merge the runs. */
|
|
|
442 |
inplace_merge (a0, a1b0, b1, less, aux);
|
|
|
443 |
}
|
|
|
444 |
}
|
|
|
445 |
while (output_run_cnt > 1);
|
|
|
446 |
|
|
|
447 |
assert (is_sorted (list_begin (list), list_end (list), less, aux));
|
|
|
448 |
}
|
|
|
449 |
|
|
|
450 |
/* Inserts ELEM in the proper position in LIST, which must be
|
|
|
451 |
sorted according to LESS given auxiliary data AUX.
|
|
|
452 |
Runs in O(n) average case in the number of elements in LIST. */
|
|
|
453 |
void
|
|
|
454 |
list_insert_ordered (struct list *list, struct list_elem *elem,
|
|
|
455 |
list_less_func *less, void *aux)
|
|
|
456 |
{
|
|
|
457 |
struct list_elem *e;
|
|
|
458 |
|
|
|
459 |
assert (list != NULL);
|
|
|
460 |
assert (elem != NULL);
|
|
|
461 |
assert (less != NULL);
|
|
|
462 |
|
|
|
463 |
for (e = list_begin (list); e != list_end (list); e = list_next (e))
|
|
|
464 |
if (less (elem, e, aux))
|
|
|
465 |
break;
|
|
|
466 |
return list_insert (e, elem);
|
|
|
467 |
}
|
|
|
468 |
|
|
|
469 |
/* Iterates through LIST and removes all but the first in each
|
|
|
470 |
set of adjacent elements that are equal according to LESS
|
|
|
471 |
given auxiliary data AUX. If DUPLICATES is non-null, then the
|
|
|
472 |
elements from LIST are appended to DUPLICATES. */
|
|
|
473 |
void
|
|
|
474 |
list_unique (struct list *list, struct list *duplicates,
|
|
|
475 |
list_less_func *less, void *aux)
|
|
|
476 |
{
|
|
|
477 |
struct list_elem *elem, *next;
|
|
|
478 |
|
|
|
479 |
assert (list != NULL);
|
|
|
480 |
assert (less != NULL);
|
|
|
481 |
if (list_empty (list))
|
|
|
482 |
return;
|
|
|
483 |
|
|
|
484 |
elem = list_begin (list);
|
|
|
485 |
while ((next = list_next (elem)) != list_end (list))
|
|
|
486 |
if (!less (elem, next, aux) && !less (next, elem, aux))
|
|
|
487 |
{
|
|
|
488 |
list_remove (next);
|
|
|
489 |
if (duplicates != NULL)
|
|
|
490 |
list_push_back (duplicates, next);
|
|
|
491 |
}
|
|
|
492 |
else
|
|
|
493 |
elem = next;
|
|
|
494 |
}
|
|
|
495 |
|
|
|
496 |
/* Returns the element in LIST with the largest value according
|
|
|
497 |
to LESS given auxiliary data AUX. If there is more than one
|
|
|
498 |
maximum, returns the one that appears earlier in the list. If
|
|
|
499 |
the list is empty, returns its tail. */
|
|
|
500 |
struct list_elem *
|
|
|
501 |
list_max (struct list *list, list_less_func *less, void *aux)
|
|
|
502 |
{
|
|
|
503 |
struct list_elem *max = list_begin (list);
|
|
|
504 |
if (max != list_end (list))
|
|
|
505 |
{
|
|
|
506 |
struct list_elem *e;
|
|
|
507 |
|
|
|
508 |
for (e = list_next (max); e != list_end (list); e = list_next (e))
|
|
|
509 |
if (less (max, e, aux))
|
|
|
510 |
max = e;
|
|
|
511 |
}
|
|
|
512 |
return max;
|
|
|
513 |
}
|
|
|
514 |
|
|
|
515 |
/* Returns the element in LIST with the smallest value according
|
|
|
516 |
to LESS given auxiliary data AUX. If there is more than one
|
|
|
517 |
minimum, returns the one that appears earlier in the list. If
|
|
|
518 |
the list is empty, returns its tail. */
|
|
|
519 |
struct list_elem *
|
|
|
520 |
list_min (struct list *list, list_less_func *less, void *aux)
|
|
|
521 |
{
|
|
|
522 |
struct list_elem *min = list_begin (list);
|
|
|
523 |
if (min != list_end (list))
|
|
|
524 |
{
|
|
|
525 |
struct list_elem *e;
|
|
|
526 |
|
|
|
527 |
for (e = list_next (min); e != list_end (list); e = list_next (e))
|
|
|
528 |
if (less (e, min, aux))
|
|
|
529 |
min = e;
|
|
|
530 |
}
|
|
|
531 |
return min;
|
|
|
532 |
}
|