| 87 |
Kevin |
1 |
// Protocol Buffers - Google's data interchange format
|
|
|
2 |
// Copyright 2008 Google Inc. All rights reserved.
|
|
|
3 |
// http://code.google.com/p/protobuf/
|
|
|
4 |
//
|
|
|
5 |
// Redistribution and use in source and binary forms, with or without
|
|
|
6 |
// modification, are permitted provided that the following conditions are
|
|
|
7 |
// met:
|
|
|
8 |
//
|
|
|
9 |
// * Redistributions of source code must retain the above copyright
|
|
|
10 |
// notice, this list of conditions and the following disclaimer.
|
|
|
11 |
// * Redistributions in binary form must reproduce the above
|
|
|
12 |
// copyright notice, this list of conditions and the following disclaimer
|
|
|
13 |
// in the documentation and/or other materials provided with the
|
|
|
14 |
// distribution.
|
|
|
15 |
// * Neither the name of Google Inc. nor the names of its
|
|
|
16 |
// contributors may be used to endorse or promote products derived from
|
|
|
17 |
// this software without specific prior written permission.
|
|
|
18 |
//
|
|
|
19 |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
20 |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
21 |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
22 |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
23 |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
24 |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
25 |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
26 |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
27 |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
28 |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
29 |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
30 |
|
|
|
31 |
package com.google.protobuf;
|
|
|
32 |
|
|
|
33 |
import java.io.IOException;
|
|
|
34 |
import java.io.InputStream;
|
|
|
35 |
import java.util.ArrayList;
|
|
|
36 |
import java.util.List;
|
|
|
37 |
|
|
|
38 |
/**
|
|
|
39 |
* Reads and decodes protocol message fields.
|
|
|
40 |
*
|
|
|
41 |
* This class contains two kinds of methods: methods that read specific
|
|
|
42 |
* protocol message constructs and field types (e.g. {@link #readTag()} and
|
|
|
43 |
* {@link #readInt32()}) and methods that read low-level values (e.g.
|
|
|
44 |
* {@link #readRawVarint32()} and {@link #readRawBytes}). If you are reading
|
|
|
45 |
* encoded protocol messages, you should use the former methods, but if you are
|
|
|
46 |
* reading some other format of your own design, use the latter.
|
|
|
47 |
*
|
|
|
48 |
* @author kenton@google.com Kenton Varda
|
|
|
49 |
*/
|
|
|
50 |
public final class CodedInputStream {
|
|
|
51 |
/**
|
|
|
52 |
* Create a new CodedInputStream wrapping the given InputStream.
|
|
|
53 |
*/
|
|
|
54 |
public static CodedInputStream newInstance(final InputStream input) {
|
|
|
55 |
return new CodedInputStream(input);
|
|
|
56 |
}
|
|
|
57 |
|
|
|
58 |
/**
|
|
|
59 |
* Create a new CodedInputStream wrapping the given byte array.
|
|
|
60 |
*/
|
|
|
61 |
public static CodedInputStream newInstance(final byte[] buf) {
|
|
|
62 |
return newInstance(buf, 0, buf.length);
|
|
|
63 |
}
|
|
|
64 |
|
|
|
65 |
/**
|
|
|
66 |
* Create a new CodedInputStream wrapping the given byte array slice.
|
|
|
67 |
*/
|
|
|
68 |
public static CodedInputStream newInstance(final byte[] buf, final int off,
|
|
|
69 |
final int len) {
|
|
|
70 |
CodedInputStream result = new CodedInputStream(buf, off, len);
|
|
|
71 |
try {
|
|
|
72 |
// Some uses of CodedInputStream can be more efficient if they know
|
|
|
73 |
// exactly how many bytes are available. By pushing the end point of the
|
|
|
74 |
// buffer as a limit, we allow them to get this information via
|
|
|
75 |
// getBytesUntilLimit(). Pushing a limit that we know is at the end of
|
|
|
76 |
// the stream can never hurt, since we can never past that point anyway.
|
|
|
77 |
result.pushLimit(len);
|
|
|
78 |
} catch (InvalidProtocolBufferException ex) {
|
|
|
79 |
// The only reason pushLimit() might throw an exception here is if len
|
|
|
80 |
// is negative. Normally pushLimit()'s parameter comes directly off the
|
|
|
81 |
// wire, so it's important to catch exceptions in case of corrupt or
|
|
|
82 |
// malicious data. However, in this case, we expect that len is not a
|
|
|
83 |
// user-supplied value, so we can assume that it being negative indicates
|
|
|
84 |
// a programming error. Therefore, throwing an unchecked exception is
|
|
|
85 |
// appropriate.
|
|
|
86 |
throw new IllegalArgumentException(ex);
|
|
|
87 |
}
|
|
|
88 |
return result;
|
|
|
89 |
}
|
|
|
90 |
|
|
|
91 |
// -----------------------------------------------------------------
|
|
|
92 |
|
|
|
93 |
/**
|
|
|
94 |
* Attempt to read a field tag, returning zero if we have reached EOF.
|
|
|
95 |
* Protocol message parsers use this to read tags, since a protocol message
|
|
|
96 |
* may legally end wherever a tag occurs, and zero is not a valid tag number.
|
|
|
97 |
*/
|
|
|
98 |
public int readTag() throws IOException {
|
|
|
99 |
if (isAtEnd()) {
|
|
|
100 |
lastTag = 0;
|
|
|
101 |
return 0;
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
lastTag = readRawVarint32();
|
|
|
105 |
if (WireFormat.getTagFieldNumber(lastTag) == 0) {
|
|
|
106 |
// If we actually read zero (or any tag number corresponding to field
|
|
|
107 |
// number zero), that's not a valid tag.
|
|
|
108 |
throw InvalidProtocolBufferException.invalidTag();
|
|
|
109 |
}
|
|
|
110 |
return lastTag;
|
|
|
111 |
}
|
|
|
112 |
|
|
|
113 |
/**
|
|
|
114 |
* Verifies that the last call to readTag() returned the given tag value.
|
|
|
115 |
* This is used to verify that a nested group ended with the correct
|
|
|
116 |
* end tag.
|
|
|
117 |
*
|
|
|
118 |
* @throws InvalidProtocolBufferException {@code value} does not match the
|
|
|
119 |
* last tag.
|
|
|
120 |
*/
|
|
|
121 |
public void checkLastTagWas(final int value)
|
|
|
122 |
throws InvalidProtocolBufferException {
|
|
|
123 |
if (lastTag != value) {
|
|
|
124 |
throw InvalidProtocolBufferException.invalidEndTag();
|
|
|
125 |
}
|
|
|
126 |
}
|
|
|
127 |
|
|
|
128 |
/**
|
|
|
129 |
* Reads and discards a single field, given its tag value.
|
|
|
130 |
*
|
|
|
131 |
* @return {@code false} if the tag is an endgroup tag, in which case
|
|
|
132 |
* nothing is skipped. Otherwise, returns {@code true}.
|
|
|
133 |
*/
|
|
|
134 |
public boolean skipField(final int tag) throws IOException {
|
|
|
135 |
switch (WireFormat.getTagWireType(tag)) {
|
|
|
136 |
case WireFormat.WIRETYPE_VARINT:
|
|
|
137 |
readInt32();
|
|
|
138 |
return true;
|
|
|
139 |
case WireFormat.WIRETYPE_FIXED64:
|
|
|
140 |
readRawLittleEndian64();
|
|
|
141 |
return true;
|
|
|
142 |
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
|
|
|
143 |
skipRawBytes(readRawVarint32());
|
|
|
144 |
return true;
|
|
|
145 |
case WireFormat.WIRETYPE_START_GROUP:
|
|
|
146 |
skipMessage();
|
|
|
147 |
checkLastTagWas(
|
|
|
148 |
WireFormat.makeTag(WireFormat.getTagFieldNumber(tag),
|
|
|
149 |
WireFormat.WIRETYPE_END_GROUP));
|
|
|
150 |
return true;
|
|
|
151 |
case WireFormat.WIRETYPE_END_GROUP:
|
|
|
152 |
return false;
|
|
|
153 |
case WireFormat.WIRETYPE_FIXED32:
|
|
|
154 |
readRawLittleEndian32();
|
|
|
155 |
return true;
|
|
|
156 |
default:
|
|
|
157 |
throw InvalidProtocolBufferException.invalidWireType();
|
|
|
158 |
}
|
|
|
159 |
}
|
|
|
160 |
|
|
|
161 |
/**
|
|
|
162 |
* Reads and discards an entire message. This will read either until EOF
|
|
|
163 |
* or until an endgroup tag, whichever comes first.
|
|
|
164 |
*/
|
|
|
165 |
public void skipMessage() throws IOException {
|
|
|
166 |
while (true) {
|
|
|
167 |
final int tag = readTag();
|
|
|
168 |
if (tag == 0 || !skipField(tag)) {
|
|
|
169 |
return;
|
|
|
170 |
}
|
|
|
171 |
}
|
|
|
172 |
}
|
|
|
173 |
|
|
|
174 |
// -----------------------------------------------------------------
|
|
|
175 |
|
|
|
176 |
/** Read a {@code double} field value from the stream. */
|
|
|
177 |
public double readDouble() throws IOException {
|
|
|
178 |
return Double.longBitsToDouble(readRawLittleEndian64());
|
|
|
179 |
}
|
|
|
180 |
|
|
|
181 |
/** Read a {@code float} field value from the stream. */
|
|
|
182 |
public float readFloat() throws IOException {
|
|
|
183 |
return Float.intBitsToFloat(readRawLittleEndian32());
|
|
|
184 |
}
|
|
|
185 |
|
|
|
186 |
/** Read a {@code uint64} field value from the stream. */
|
|
|
187 |
public long readUInt64() throws IOException {
|
|
|
188 |
return readRawVarint64();
|
|
|
189 |
}
|
|
|
190 |
|
|
|
191 |
/** Read an {@code int64} field value from the stream. */
|
|
|
192 |
public long readInt64() throws IOException {
|
|
|
193 |
return readRawVarint64();
|
|
|
194 |
}
|
|
|
195 |
|
|
|
196 |
/** Read an {@code int32} field value from the stream. */
|
|
|
197 |
public int readInt32() throws IOException {
|
|
|
198 |
return readRawVarint32();
|
|
|
199 |
}
|
|
|
200 |
|
|
|
201 |
/** Read a {@code fixed64} field value from the stream. */
|
|
|
202 |
public long readFixed64() throws IOException {
|
|
|
203 |
return readRawLittleEndian64();
|
|
|
204 |
}
|
|
|
205 |
|
|
|
206 |
/** Read a {@code fixed32} field value from the stream. */
|
|
|
207 |
public int readFixed32() throws IOException {
|
|
|
208 |
return readRawLittleEndian32();
|
|
|
209 |
}
|
|
|
210 |
|
|
|
211 |
/** Read a {@code bool} field value from the stream. */
|
|
|
212 |
public boolean readBool() throws IOException {
|
|
|
213 |
return readRawVarint32() != 0;
|
|
|
214 |
}
|
|
|
215 |
|
|
|
216 |
/** Read a {@code string} field value from the stream. */
|
|
|
217 |
public String readString() throws IOException {
|
|
|
218 |
final int size = readRawVarint32();
|
|
|
219 |
if (size <= (bufferSize - bufferPos) && size > 0) {
|
|
|
220 |
// Fast path: We already have the bytes in a contiguous buffer, so
|
|
|
221 |
// just copy directly from it.
|
|
|
222 |
final String result = new String(buffer, bufferPos, size, "UTF-8");
|
|
|
223 |
bufferPos += size;
|
|
|
224 |
return result;
|
|
|
225 |
} else {
|
|
|
226 |
// Slow path: Build a byte array first then copy it.
|
|
|
227 |
return new String(readRawBytes(size), "UTF-8");
|
|
|
228 |
}
|
|
|
229 |
}
|
|
|
230 |
|
|
|
231 |
/** Read a {@code group} field value from the stream. */
|
|
|
232 |
public void readGroup(final int fieldNumber,
|
|
|
233 |
final MessageLite.Builder builder,
|
|
|
234 |
final ExtensionRegistryLite extensionRegistry)
|
|
|
235 |
throws IOException {
|
|
|
236 |
if (recursionDepth >= recursionLimit) {
|
|
|
237 |
throw InvalidProtocolBufferException.recursionLimitExceeded();
|
|
|
238 |
}
|
|
|
239 |
++recursionDepth;
|
|
|
240 |
builder.mergeFrom(this, extensionRegistry);
|
|
|
241 |
checkLastTagWas(
|
|
|
242 |
WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
|
|
|
243 |
--recursionDepth;
|
|
|
244 |
}
|
|
|
245 |
|
|
|
246 |
/**
|
|
|
247 |
* Reads a {@code group} field value from the stream and merges it into the
|
|
|
248 |
* given {@link UnknownFieldSet}.
|
|
|
249 |
*
|
|
|
250 |
* @deprecated UnknownFieldSet.Builder now implements MessageLite.Builder, so
|
|
|
251 |
* you can just call {@link #readGroup}.
|
|
|
252 |
*/
|
|
|
253 |
@Deprecated
|
|
|
254 |
public void readUnknownGroup(final int fieldNumber,
|
|
|
255 |
final MessageLite.Builder builder)
|
|
|
256 |
throws IOException {
|
|
|
257 |
// We know that UnknownFieldSet will ignore any ExtensionRegistry so it
|
|
|
258 |
// is safe to pass null here. (We can't call
|
|
|
259 |
// ExtensionRegistry.getEmptyRegistry() because that would make this
|
|
|
260 |
// class depend on ExtensionRegistry, which is not part of the lite
|
|
|
261 |
// library.)
|
|
|
262 |
readGroup(fieldNumber, builder, null);
|
|
|
263 |
}
|
|
|
264 |
|
|
|
265 |
/** Read an embedded message field value from the stream. */
|
|
|
266 |
public void readMessage(final MessageLite.Builder builder,
|
|
|
267 |
final ExtensionRegistryLite extensionRegistry)
|
|
|
268 |
throws IOException {
|
|
|
269 |
final int length = readRawVarint32();
|
|
|
270 |
if (recursionDepth >= recursionLimit) {
|
|
|
271 |
throw InvalidProtocolBufferException.recursionLimitExceeded();
|
|
|
272 |
}
|
|
|
273 |
final int oldLimit = pushLimit(length);
|
|
|
274 |
++recursionDepth;
|
|
|
275 |
builder.mergeFrom(this, extensionRegistry);
|
|
|
276 |
checkLastTagWas(0);
|
|
|
277 |
--recursionDepth;
|
|
|
278 |
popLimit(oldLimit);
|
|
|
279 |
}
|
|
|
280 |
|
|
|
281 |
/** Read a {@code bytes} field value from the stream. */
|
|
|
282 |
public ByteString readBytes() throws IOException {
|
|
|
283 |
final int size = readRawVarint32();
|
|
|
284 |
if (size == 0) {
|
|
|
285 |
return ByteString.EMPTY;
|
|
|
286 |
} else if (size <= (bufferSize - bufferPos) && size > 0) {
|
|
|
287 |
// Fast path: We already have the bytes in a contiguous buffer, so
|
|
|
288 |
// just copy directly from it.
|
|
|
289 |
final ByteString result = ByteString.copyFrom(buffer, bufferPos, size);
|
|
|
290 |
bufferPos += size;
|
|
|
291 |
return result;
|
|
|
292 |
} else {
|
|
|
293 |
// Slow path: Build a byte array first then copy it.
|
|
|
294 |
return ByteString.copyFrom(readRawBytes(size));
|
|
|
295 |
}
|
|
|
296 |
}
|
|
|
297 |
|
|
|
298 |
/** Read a {@code uint32} field value from the stream. */
|
|
|
299 |
public int readUInt32() throws IOException {
|
|
|
300 |
return readRawVarint32();
|
|
|
301 |
}
|
|
|
302 |
|
|
|
303 |
/**
|
|
|
304 |
* Read an enum field value from the stream. Caller is responsible
|
|
|
305 |
* for converting the numeric value to an actual enum.
|
|
|
306 |
*/
|
|
|
307 |
public int readEnum() throws IOException {
|
|
|
308 |
return readRawVarint32();
|
|
|
309 |
}
|
|
|
310 |
|
|
|
311 |
/** Read an {@code sfixed32} field value from the stream. */
|
|
|
312 |
public int readSFixed32() throws IOException {
|
|
|
313 |
return readRawLittleEndian32();
|
|
|
314 |
}
|
|
|
315 |
|
|
|
316 |
/** Read an {@code sfixed64} field value from the stream. */
|
|
|
317 |
public long readSFixed64() throws IOException {
|
|
|
318 |
return readRawLittleEndian64();
|
|
|
319 |
}
|
|
|
320 |
|
|
|
321 |
/** Read an {@code sint32} field value from the stream. */
|
|
|
322 |
public int readSInt32() throws IOException {
|
|
|
323 |
return decodeZigZag32(readRawVarint32());
|
|
|
324 |
}
|
|
|
325 |
|
|
|
326 |
/** Read an {@code sint64} field value from the stream. */
|
|
|
327 |
public long readSInt64() throws IOException {
|
|
|
328 |
return decodeZigZag64(readRawVarint64());
|
|
|
329 |
}
|
|
|
330 |
|
|
|
331 |
// =================================================================
|
|
|
332 |
|
|
|
333 |
/**
|
|
|
334 |
* Read a raw Varint from the stream. If larger than 32 bits, discard the
|
|
|
335 |
* upper bits.
|
|
|
336 |
*/
|
|
|
337 |
public int readRawVarint32() throws IOException {
|
|
|
338 |
byte tmp = readRawByte();
|
|
|
339 |
if (tmp >= 0) {
|
|
|
340 |
return tmp;
|
|
|
341 |
}
|
|
|
342 |
int result = tmp & 0x7f;
|
|
|
343 |
if ((tmp = readRawByte()) >= 0) {
|
|
|
344 |
result |= tmp << 7;
|
|
|
345 |
} else {
|
|
|
346 |
result |= (tmp & 0x7f) << 7;
|
|
|
347 |
if ((tmp = readRawByte()) >= 0) {
|
|
|
348 |
result |= tmp << 14;
|
|
|
349 |
} else {
|
|
|
350 |
result |= (tmp & 0x7f) << 14;
|
|
|
351 |
if ((tmp = readRawByte()) >= 0) {
|
|
|
352 |
result |= tmp << 21;
|
|
|
353 |
} else {
|
|
|
354 |
result |= (tmp & 0x7f) << 21;
|
|
|
355 |
result |= (tmp = readRawByte()) << 28;
|
|
|
356 |
if (tmp < 0) {
|
|
|
357 |
// Discard upper 32 bits.
|
|
|
358 |
for (int i = 0; i < 5; i++) {
|
|
|
359 |
if (readRawByte() >= 0) {
|
|
|
360 |
return result;
|
|
|
361 |
}
|
|
|
362 |
}
|
|
|
363 |
throw InvalidProtocolBufferException.malformedVarint();
|
|
|
364 |
}
|
|
|
365 |
}
|
|
|
366 |
}
|
|
|
367 |
}
|
|
|
368 |
return result;
|
|
|
369 |
}
|
|
|
370 |
|
|
|
371 |
/**
|
|
|
372 |
* Reads a varint from the input one byte at a time, so that it does not
|
|
|
373 |
* read any bytes after the end of the varint. If you simply wrapped the
|
|
|
374 |
* stream in a CodedInputStream and used {@link #readRawVarint32(InputStream)}
|
|
|
375 |
* then you would probably end up reading past the end of the varint since
|
|
|
376 |
* CodedInputStream buffers its input.
|
|
|
377 |
*/
|
|
|
378 |
static int readRawVarint32(final InputStream input) throws IOException {
|
|
|
379 |
final int firstByte = input.read();
|
|
|
380 |
if (firstByte == -1) {
|
|
|
381 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
382 |
}
|
|
|
383 |
return readRawVarint32(firstByte, input);
|
|
|
384 |
}
|
|
|
385 |
|
|
|
386 |
/**
|
|
|
387 |
* Like {@link #readRawVarint32(InputStream)}, but expects that the caller
|
|
|
388 |
* has already read one byte. This allows the caller to determine if EOF
|
|
|
389 |
* has been reached before attempting to read.
|
|
|
390 |
*/
|
|
|
391 |
public static int readRawVarint32(
|
|
|
392 |
final int firstByte, final InputStream input) throws IOException {
|
|
|
393 |
if ((firstByte & 0x80) == 0) {
|
|
|
394 |
return firstByte;
|
|
|
395 |
}
|
|
|
396 |
|
|
|
397 |
int result = firstByte & 0x7f;
|
|
|
398 |
int offset = 7;
|
|
|
399 |
for (; offset < 32; offset += 7) {
|
|
|
400 |
final int b = input.read();
|
|
|
401 |
if (b == -1) {
|
|
|
402 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
403 |
}
|
|
|
404 |
result |= (b & 0x7f) << offset;
|
|
|
405 |
if ((b & 0x80) == 0) {
|
|
|
406 |
return result;
|
|
|
407 |
}
|
|
|
408 |
}
|
|
|
409 |
// Keep reading up to 64 bits.
|
|
|
410 |
for (; offset < 64; offset += 7) {
|
|
|
411 |
final int b = input.read();
|
|
|
412 |
if (b == -1) {
|
|
|
413 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
414 |
}
|
|
|
415 |
if ((b & 0x80) == 0) {
|
|
|
416 |
return result;
|
|
|
417 |
}
|
|
|
418 |
}
|
|
|
419 |
throw InvalidProtocolBufferException.malformedVarint();
|
|
|
420 |
}
|
|
|
421 |
|
|
|
422 |
/** Read a raw Varint from the stream. */
|
|
|
423 |
public long readRawVarint64() throws IOException {
|
|
|
424 |
int shift = 0;
|
|
|
425 |
long result = 0;
|
|
|
426 |
while (shift < 64) {
|
|
|
427 |
final byte b = readRawByte();
|
|
|
428 |
result |= (long)(b & 0x7F) << shift;
|
|
|
429 |
if ((b & 0x80) == 0) {
|
|
|
430 |
return result;
|
|
|
431 |
}
|
|
|
432 |
shift += 7;
|
|
|
433 |
}
|
|
|
434 |
throw InvalidProtocolBufferException.malformedVarint();
|
|
|
435 |
}
|
|
|
436 |
|
|
|
437 |
/** Read a 32-bit little-endian integer from the stream. */
|
|
|
438 |
public int readRawLittleEndian32() throws IOException {
|
|
|
439 |
final byte b1 = readRawByte();
|
|
|
440 |
final byte b2 = readRawByte();
|
|
|
441 |
final byte b3 = readRawByte();
|
|
|
442 |
final byte b4 = readRawByte();
|
|
|
443 |
return (((int)b1 & 0xff) ) |
|
|
|
444 |
(((int)b2 & 0xff) << 8) |
|
|
|
445 |
(((int)b3 & 0xff) << 16) |
|
|
|
446 |
(((int)b4 & 0xff) << 24);
|
|
|
447 |
}
|
|
|
448 |
|
|
|
449 |
/** Read a 64-bit little-endian integer from the stream. */
|
|
|
450 |
public long readRawLittleEndian64() throws IOException {
|
|
|
451 |
final byte b1 = readRawByte();
|
|
|
452 |
final byte b2 = readRawByte();
|
|
|
453 |
final byte b3 = readRawByte();
|
|
|
454 |
final byte b4 = readRawByte();
|
|
|
455 |
final byte b5 = readRawByte();
|
|
|
456 |
final byte b6 = readRawByte();
|
|
|
457 |
final byte b7 = readRawByte();
|
|
|
458 |
final byte b8 = readRawByte();
|
|
|
459 |
return (((long)b1 & 0xff) ) |
|
|
|
460 |
(((long)b2 & 0xff) << 8) |
|
|
|
461 |
(((long)b3 & 0xff) << 16) |
|
|
|
462 |
(((long)b4 & 0xff) << 24) |
|
|
|
463 |
(((long)b5 & 0xff) << 32) |
|
|
|
464 |
(((long)b6 & 0xff) << 40) |
|
|
|
465 |
(((long)b7 & 0xff) << 48) |
|
|
|
466 |
(((long)b8 & 0xff) << 56);
|
|
|
467 |
}
|
|
|
468 |
|
|
|
469 |
/**
|
|
|
470 |
* Decode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers
|
|
|
471 |
* into values that can be efficiently encoded with varint. (Otherwise,
|
|
|
472 |
* negative values must be sign-extended to 64 bits to be varint encoded,
|
|
|
473 |
* thus always taking 10 bytes on the wire.)
|
|
|
474 |
*
|
|
|
475 |
* @param n An unsigned 32-bit integer, stored in a signed int because
|
|
|
476 |
* Java has no explicit unsigned support.
|
|
|
477 |
* @return A signed 32-bit integer.
|
|
|
478 |
*/
|
|
|
479 |
public static int decodeZigZag32(final int n) {
|
|
|
480 |
return (n >>> 1) ^ -(n & 1);
|
|
|
481 |
}
|
|
|
482 |
|
|
|
483 |
/**
|
|
|
484 |
* Decode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers
|
|
|
485 |
* into values that can be efficiently encoded with varint. (Otherwise,
|
|
|
486 |
* negative values must be sign-extended to 64 bits to be varint encoded,
|
|
|
487 |
* thus always taking 10 bytes on the wire.)
|
|
|
488 |
*
|
|
|
489 |
* @param n An unsigned 64-bit integer, stored in a signed int because
|
|
|
490 |
* Java has no explicit unsigned support.
|
|
|
491 |
* @return A signed 64-bit integer.
|
|
|
492 |
*/
|
|
|
493 |
public static long decodeZigZag64(final long n) {
|
|
|
494 |
return (n >>> 1) ^ -(n & 1);
|
|
|
495 |
}
|
|
|
496 |
|
|
|
497 |
// -----------------------------------------------------------------
|
|
|
498 |
|
|
|
499 |
private final byte[] buffer;
|
|
|
500 |
private int bufferSize;
|
|
|
501 |
private int bufferSizeAfterLimit;
|
|
|
502 |
private int bufferPos;
|
|
|
503 |
private final InputStream input;
|
|
|
504 |
private int lastTag;
|
|
|
505 |
|
|
|
506 |
/**
|
|
|
507 |
* The total number of bytes read before the current buffer. The total
|
|
|
508 |
* bytes read up to the current position can be computed as
|
|
|
509 |
* {@code totalBytesRetired + bufferPos}. This value may be negative if
|
|
|
510 |
* reading started in the middle of the current buffer (e.g. if the
|
|
|
511 |
* constructor that takes a byte array and an offset was used).
|
|
|
512 |
*/
|
|
|
513 |
private int totalBytesRetired;
|
|
|
514 |
|
|
|
515 |
/** The absolute position of the end of the current message. */
|
|
|
516 |
private int currentLimit = Integer.MAX_VALUE;
|
|
|
517 |
|
|
|
518 |
/** See setRecursionLimit() */
|
|
|
519 |
private int recursionDepth;
|
|
|
520 |
private int recursionLimit = DEFAULT_RECURSION_LIMIT;
|
|
|
521 |
|
|
|
522 |
/** See setSizeLimit() */
|
|
|
523 |
private int sizeLimit = DEFAULT_SIZE_LIMIT;
|
|
|
524 |
|
|
|
525 |
private static final int DEFAULT_RECURSION_LIMIT = 64;
|
|
|
526 |
private static final int DEFAULT_SIZE_LIMIT = 64 << 20; // 64MB
|
|
|
527 |
private static final int BUFFER_SIZE = 4096;
|
|
|
528 |
|
|
|
529 |
private CodedInputStream(final byte[] buffer, final int off, final int len) {
|
|
|
530 |
this.buffer = buffer;
|
|
|
531 |
bufferSize = off + len;
|
|
|
532 |
bufferPos = off;
|
|
|
533 |
totalBytesRetired = -off;
|
|
|
534 |
input = null;
|
|
|
535 |
}
|
|
|
536 |
|
|
|
537 |
private CodedInputStream(final InputStream input) {
|
|
|
538 |
buffer = new byte[BUFFER_SIZE];
|
|
|
539 |
bufferSize = 0;
|
|
|
540 |
bufferPos = 0;
|
|
|
541 |
totalBytesRetired = 0;
|
|
|
542 |
this.input = input;
|
|
|
543 |
}
|
|
|
544 |
|
|
|
545 |
/**
|
|
|
546 |
* Set the maximum message recursion depth. In order to prevent malicious
|
|
|
547 |
* messages from causing stack overflows, {@code CodedInputStream} limits
|
|
|
548 |
* how deeply messages may be nested. The default limit is 64.
|
|
|
549 |
*
|
|
|
550 |
* @return the old limit.
|
|
|
551 |
*/
|
|
|
552 |
public int setRecursionLimit(final int limit) {
|
|
|
553 |
if (limit < 0) {
|
|
|
554 |
throw new IllegalArgumentException(
|
|
|
555 |
"Recursion limit cannot be negative: " + limit);
|
|
|
556 |
}
|
|
|
557 |
final int oldLimit = recursionLimit;
|
|
|
558 |
recursionLimit = limit;
|
|
|
559 |
return oldLimit;
|
|
|
560 |
}
|
|
|
561 |
|
|
|
562 |
/**
|
|
|
563 |
* Set the maximum message size. In order to prevent malicious
|
|
|
564 |
* messages from exhausting memory or causing integer overflows,
|
|
|
565 |
* {@code CodedInputStream} limits how large a message may be.
|
|
|
566 |
* The default limit is 64MB. You should set this limit as small
|
|
|
567 |
* as you can without harming your app's functionality. Note that
|
|
|
568 |
* size limits only apply when reading from an {@code InputStream}, not
|
|
|
569 |
* when constructed around a raw byte array (nor with
|
|
|
570 |
* {@link ByteString#newCodedInput}).
|
|
|
571 |
* <p>
|
|
|
572 |
* If you want to read several messages from a single CodedInputStream, you
|
|
|
573 |
* could call {@link #resetSizeCounter()} after each one to avoid hitting the
|
|
|
574 |
* size limit.
|
|
|
575 |
*
|
|
|
576 |
* @return the old limit.
|
|
|
577 |
*/
|
|
|
578 |
public int setSizeLimit(final int limit) {
|
|
|
579 |
if (limit < 0) {
|
|
|
580 |
throw new IllegalArgumentException(
|
|
|
581 |
"Size limit cannot be negative: " + limit);
|
|
|
582 |
}
|
|
|
583 |
final int oldLimit = sizeLimit;
|
|
|
584 |
sizeLimit = limit;
|
|
|
585 |
return oldLimit;
|
|
|
586 |
}
|
|
|
587 |
|
|
|
588 |
/**
|
|
|
589 |
* Resets the current size counter to zero (see {@link #setSizeLimit(int)}).
|
|
|
590 |
*/
|
|
|
591 |
public void resetSizeCounter() {
|
|
|
592 |
totalBytesRetired = -bufferPos;
|
|
|
593 |
}
|
|
|
594 |
|
|
|
595 |
/**
|
|
|
596 |
* Sets {@code currentLimit} to (current position) + {@code byteLimit}. This
|
|
|
597 |
* is called when descending into a length-delimited embedded message.
|
|
|
598 |
*
|
|
|
599 |
* <p>Note that {@code pushLimit()} does NOT affect how many bytes the
|
|
|
600 |
* {@code CodedInputStream} reads from an underlying {@code InputStream} when
|
|
|
601 |
* refreshing its buffer. If you need to prevent reading past a certain
|
|
|
602 |
* point in the underlying {@code InputStream} (e.g. because you expect it to
|
|
|
603 |
* contain more data after the end of the message which you need to handle
|
|
|
604 |
* differently) then you must place a wrapper around you {@code InputStream}
|
|
|
605 |
* which limits the amount of data that can be read from it.
|
|
|
606 |
*
|
|
|
607 |
* @return the old limit.
|
|
|
608 |
*/
|
|
|
609 |
public int pushLimit(int byteLimit) throws InvalidProtocolBufferException {
|
|
|
610 |
if (byteLimit < 0) {
|
|
|
611 |
throw InvalidProtocolBufferException.negativeSize();
|
|
|
612 |
}
|
|
|
613 |
byteLimit += totalBytesRetired + bufferPos;
|
|
|
614 |
final int oldLimit = currentLimit;
|
|
|
615 |
if (byteLimit > oldLimit) {
|
|
|
616 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
617 |
}
|
|
|
618 |
currentLimit = byteLimit;
|
|
|
619 |
|
|
|
620 |
recomputeBufferSizeAfterLimit();
|
|
|
621 |
|
|
|
622 |
return oldLimit;
|
|
|
623 |
}
|
|
|
624 |
|
|
|
625 |
private void recomputeBufferSizeAfterLimit() {
|
|
|
626 |
bufferSize += bufferSizeAfterLimit;
|
|
|
627 |
final int bufferEnd = totalBytesRetired + bufferSize;
|
|
|
628 |
if (bufferEnd > currentLimit) {
|
|
|
629 |
// Limit is in current buffer.
|
|
|
630 |
bufferSizeAfterLimit = bufferEnd - currentLimit;
|
|
|
631 |
bufferSize -= bufferSizeAfterLimit;
|
|
|
632 |
} else {
|
|
|
633 |
bufferSizeAfterLimit = 0;
|
|
|
634 |
}
|
|
|
635 |
}
|
|
|
636 |
|
|
|
637 |
/**
|
|
|
638 |
* Discards the current limit, returning to the previous limit.
|
|
|
639 |
*
|
|
|
640 |
* @param oldLimit The old limit, as returned by {@code pushLimit}.
|
|
|
641 |
*/
|
|
|
642 |
public void popLimit(final int oldLimit) {
|
|
|
643 |
currentLimit = oldLimit;
|
|
|
644 |
recomputeBufferSizeAfterLimit();
|
|
|
645 |
}
|
|
|
646 |
|
|
|
647 |
/**
|
|
|
648 |
* Returns the number of bytes to be read before the current limit.
|
|
|
649 |
* If no limit is set, returns -1.
|
|
|
650 |
*/
|
|
|
651 |
public int getBytesUntilLimit() {
|
|
|
652 |
if (currentLimit == Integer.MAX_VALUE) {
|
|
|
653 |
return -1;
|
|
|
654 |
}
|
|
|
655 |
|
|
|
656 |
final int currentAbsolutePosition = totalBytesRetired + bufferPos;
|
|
|
657 |
return currentLimit - currentAbsolutePosition;
|
|
|
658 |
}
|
|
|
659 |
|
|
|
660 |
/**
|
|
|
661 |
* Returns true if the stream has reached the end of the input. This is the
|
|
|
662 |
* case if either the end of the underlying input source has been reached or
|
|
|
663 |
* if the stream has reached a limit created using {@link #pushLimit(int)}.
|
|
|
664 |
*/
|
|
|
665 |
public boolean isAtEnd() throws IOException {
|
|
|
666 |
return bufferPos == bufferSize && !refillBuffer(false);
|
|
|
667 |
}
|
|
|
668 |
|
|
|
669 |
/**
|
|
|
670 |
* The total bytes read up to the current position. Calling
|
|
|
671 |
* {@link #resetSizeCounter()} resets this value to zero.
|
|
|
672 |
*/
|
|
|
673 |
public int getTotalBytesRead() {
|
|
|
674 |
return totalBytesRetired + bufferPos;
|
|
|
675 |
}
|
|
|
676 |
|
|
|
677 |
/**
|
|
|
678 |
* Called with {@code this.buffer} is empty to read more bytes from the
|
|
|
679 |
* input. If {@code mustSucceed} is true, refillBuffer() gurantees that
|
|
|
680 |
* either there will be at least one byte in the buffer when it returns
|
|
|
681 |
* or it will throw an exception. If {@code mustSucceed} is false,
|
|
|
682 |
* refillBuffer() returns false if no more bytes were available.
|
|
|
683 |
*/
|
|
|
684 |
private boolean refillBuffer(final boolean mustSucceed) throws IOException {
|
|
|
685 |
if (bufferPos < bufferSize) {
|
|
|
686 |
throw new IllegalStateException(
|
|
|
687 |
"refillBuffer() called when buffer wasn't empty.");
|
|
|
688 |
}
|
|
|
689 |
|
|
|
690 |
if (totalBytesRetired + bufferSize == currentLimit) {
|
|
|
691 |
// Oops, we hit a limit.
|
|
|
692 |
if (mustSucceed) {
|
|
|
693 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
694 |
} else {
|
|
|
695 |
return false;
|
|
|
696 |
}
|
|
|
697 |
}
|
|
|
698 |
|
|
|
699 |
totalBytesRetired += bufferSize;
|
|
|
700 |
|
|
|
701 |
bufferPos = 0;
|
|
|
702 |
bufferSize = (input == null) ? -1 : input.read(buffer);
|
|
|
703 |
if (bufferSize == 0 || bufferSize < -1) {
|
|
|
704 |
throw new IllegalStateException(
|
|
|
705 |
"InputStream#read(byte[]) returned invalid result: " + bufferSize +
|
|
|
706 |
"\nThe InputStream implementation is buggy.");
|
|
|
707 |
}
|
|
|
708 |
if (bufferSize == -1) {
|
|
|
709 |
bufferSize = 0;
|
|
|
710 |
if (mustSucceed) {
|
|
|
711 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
712 |
} else {
|
|
|
713 |
return false;
|
|
|
714 |
}
|
|
|
715 |
} else {
|
|
|
716 |
recomputeBufferSizeAfterLimit();
|
|
|
717 |
final int totalBytesRead =
|
|
|
718 |
totalBytesRetired + bufferSize + bufferSizeAfterLimit;
|
|
|
719 |
if (totalBytesRead > sizeLimit || totalBytesRead < 0) {
|
|
|
720 |
throw InvalidProtocolBufferException.sizeLimitExceeded();
|
|
|
721 |
}
|
|
|
722 |
return true;
|
|
|
723 |
}
|
|
|
724 |
}
|
|
|
725 |
|
|
|
726 |
/**
|
|
|
727 |
* Read one byte from the input.
|
|
|
728 |
*
|
|
|
729 |
* @throws InvalidProtocolBufferException The end of the stream or the current
|
|
|
730 |
* limit was reached.
|
|
|
731 |
*/
|
|
|
732 |
public byte readRawByte() throws IOException {
|
|
|
733 |
if (bufferPos == bufferSize) {
|
|
|
734 |
refillBuffer(true);
|
|
|
735 |
}
|
|
|
736 |
return buffer[bufferPos++];
|
|
|
737 |
}
|
|
|
738 |
|
|
|
739 |
/**
|
|
|
740 |
* Read a fixed size of bytes from the input.
|
|
|
741 |
*
|
|
|
742 |
* @throws InvalidProtocolBufferException The end of the stream or the current
|
|
|
743 |
* limit was reached.
|
|
|
744 |
*/
|
|
|
745 |
public byte[] readRawBytes(final int size) throws IOException {
|
|
|
746 |
if (size < 0) {
|
|
|
747 |
throw InvalidProtocolBufferException.negativeSize();
|
|
|
748 |
}
|
|
|
749 |
|
|
|
750 |
if (totalBytesRetired + bufferPos + size > currentLimit) {
|
|
|
751 |
// Read to the end of the stream anyway.
|
|
|
752 |
skipRawBytes(currentLimit - totalBytesRetired - bufferPos);
|
|
|
753 |
// Then fail.
|
|
|
754 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
755 |
}
|
|
|
756 |
|
|
|
757 |
if (size <= bufferSize - bufferPos) {
|
|
|
758 |
// We have all the bytes we need already.
|
|
|
759 |
final byte[] bytes = new byte[size];
|
|
|
760 |
System.arraycopy(buffer, bufferPos, bytes, 0, size);
|
|
|
761 |
bufferPos += size;
|
|
|
762 |
return bytes;
|
|
|
763 |
} else if (size < BUFFER_SIZE) {
|
|
|
764 |
// Reading more bytes than are in the buffer, but not an excessive number
|
|
|
765 |
// of bytes. We can safely allocate the resulting array ahead of time.
|
|
|
766 |
|
|
|
767 |
// First copy what we have.
|
|
|
768 |
final byte[] bytes = new byte[size];
|
|
|
769 |
int pos = bufferSize - bufferPos;
|
|
|
770 |
System.arraycopy(buffer, bufferPos, bytes, 0, pos);
|
|
|
771 |
bufferPos = bufferSize;
|
|
|
772 |
|
|
|
773 |
// We want to use refillBuffer() and then copy from the buffer into our
|
|
|
774 |
// byte array rather than reading directly into our byte array because
|
|
|
775 |
// the input may be unbuffered.
|
|
|
776 |
refillBuffer(true);
|
|
|
777 |
|
|
|
778 |
while (size - pos > bufferSize) {
|
|
|
779 |
System.arraycopy(buffer, 0, bytes, pos, bufferSize);
|
|
|
780 |
pos += bufferSize;
|
|
|
781 |
bufferPos = bufferSize;
|
|
|
782 |
refillBuffer(true);
|
|
|
783 |
}
|
|
|
784 |
|
|
|
785 |
System.arraycopy(buffer, 0, bytes, pos, size - pos);
|
|
|
786 |
bufferPos = size - pos;
|
|
|
787 |
|
|
|
788 |
return bytes;
|
|
|
789 |
} else {
|
|
|
790 |
// The size is very large. For security reasons, we can't allocate the
|
|
|
791 |
// entire byte array yet. The size comes directly from the input, so a
|
|
|
792 |
// maliciously-crafted message could provide a bogus very large size in
|
|
|
793 |
// order to trick the app into allocating a lot of memory. We avoid this
|
|
|
794 |
// by allocating and reading only a small chunk at a time, so that the
|
|
|
795 |
// malicious message must actually *be* extremely large to cause
|
|
|
796 |
// problems. Meanwhile, we limit the allowed size of a message elsewhere.
|
|
|
797 |
|
|
|
798 |
// Remember the buffer markers since we'll have to copy the bytes out of
|
|
|
799 |
// it later.
|
|
|
800 |
final int originalBufferPos = bufferPos;
|
|
|
801 |
final int originalBufferSize = bufferSize;
|
|
|
802 |
|
|
|
803 |
// Mark the current buffer consumed.
|
|
|
804 |
totalBytesRetired += bufferSize;
|
|
|
805 |
bufferPos = 0;
|
|
|
806 |
bufferSize = 0;
|
|
|
807 |
|
|
|
808 |
// Read all the rest of the bytes we need.
|
|
|
809 |
int sizeLeft = size - (originalBufferSize - originalBufferPos);
|
|
|
810 |
final List<byte[]> chunks = new ArrayList<byte[]>();
|
|
|
811 |
|
|
|
812 |
while (sizeLeft > 0) {
|
|
|
813 |
final byte[] chunk = new byte[Math.min(sizeLeft, BUFFER_SIZE)];
|
|
|
814 |
int pos = 0;
|
|
|
815 |
while (pos < chunk.length) {
|
|
|
816 |
final int n = (input == null) ? -1 :
|
|
|
817 |
input.read(chunk, pos, chunk.length - pos);
|
|
|
818 |
if (n == -1) {
|
|
|
819 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
820 |
}
|
|
|
821 |
totalBytesRetired += n;
|
|
|
822 |
pos += n;
|
|
|
823 |
}
|
|
|
824 |
sizeLeft -= chunk.length;
|
|
|
825 |
chunks.add(chunk);
|
|
|
826 |
}
|
|
|
827 |
|
|
|
828 |
// OK, got everything. Now concatenate it all into one buffer.
|
|
|
829 |
final byte[] bytes = new byte[size];
|
|
|
830 |
|
|
|
831 |
// Start by copying the leftover bytes from this.buffer.
|
|
|
832 |
int pos = originalBufferSize - originalBufferPos;
|
|
|
833 |
System.arraycopy(buffer, originalBufferPos, bytes, 0, pos);
|
|
|
834 |
|
|
|
835 |
// And now all the chunks.
|
|
|
836 |
for (final byte[] chunk : chunks) {
|
|
|
837 |
System.arraycopy(chunk, 0, bytes, pos, chunk.length);
|
|
|
838 |
pos += chunk.length;
|
|
|
839 |
}
|
|
|
840 |
|
|
|
841 |
// Done.
|
|
|
842 |
return bytes;
|
|
|
843 |
}
|
|
|
844 |
}
|
|
|
845 |
|
|
|
846 |
/**
|
|
|
847 |
* Reads and discards {@code size} bytes.
|
|
|
848 |
*
|
|
|
849 |
* @throws InvalidProtocolBufferException The end of the stream or the current
|
|
|
850 |
* limit was reached.
|
|
|
851 |
*/
|
|
|
852 |
public void skipRawBytes(final int size) throws IOException {
|
|
|
853 |
if (size < 0) {
|
|
|
854 |
throw InvalidProtocolBufferException.negativeSize();
|
|
|
855 |
}
|
|
|
856 |
|
|
|
857 |
if (totalBytesRetired + bufferPos + size > currentLimit) {
|
|
|
858 |
// Read to the end of the stream anyway.
|
|
|
859 |
skipRawBytes(currentLimit - totalBytesRetired - bufferPos);
|
|
|
860 |
// Then fail.
|
|
|
861 |
throw InvalidProtocolBufferException.truncatedMessage();
|
|
|
862 |
}
|
|
|
863 |
|
|
|
864 |
if (size <= bufferSize - bufferPos) {
|
|
|
865 |
// We have all the bytes we need already.
|
|
|
866 |
bufferPos += size;
|
|
|
867 |
} else {
|
|
|
868 |
// Skipping more bytes than are in the buffer. First skip what we have.
|
|
|
869 |
int pos = bufferSize - bufferPos;
|
|
|
870 |
bufferPos = bufferSize;
|
|
|
871 |
|
|
|
872 |
// Keep refilling the buffer until we get to the point we wanted to skip
|
|
|
873 |
// to. This has the side effect of ensuring the limits are updated
|
|
|
874 |
// correctly.
|
|
|
875 |
refillBuffer(true);
|
|
|
876 |
while (size - pos > bufferSize) {
|
|
|
877 |
pos += bufferSize;
|
|
|
878 |
bufferPos = bufferSize;
|
|
|
879 |
refillBuffer(true);
|
|
|
880 |
}
|
|
|
881 |
|
|
|
882 |
bufferPos = size - pos;
|
|
|
883 |
}
|
|
|
884 |
}
|
|
|
885 |
}
|